Enzymforschung

Pilz wird mithilfe eines Enzyms für das Immunsystem unsichtbar

Wissenschaftler stellten bei der Charakterisierung eines Enzyms fest, dass ein pilzlicher Krankheitserreger mithilfe dieses Enzyms für das Immunsystem unsichtbar bleiben kann.

Das menschliche Immunsystem kann Pilze leicht erkennen, weil ihre Zellen von einer festen Zellwand aus Chitin und anderen komplexen Zuckern umgeben sind. Forscher der Universität Münster haben herausgefunden, dass sich ein pilzlicher Krankheitserreger, Cryptococcus neoformans, mithilfe eines Enzyms vor dem Immunsystem versteckt. Die Studie ist in der Fachzeitschrift "PNAS" erschienen.

Modell des Enzyms Chitosan-Deacetylase (türkis) mit seinem Substrat Chitosan (hellgrün), das im aktiven Zentrum des Enzyms gebunden ist. © Martin Bonin

Während es Viren und Bakterien regelmäßig schaffen, den menschlichen Organismus zu infizieren, gelingt das Pilzen nur sehr selten. Der Grund: Sie sind für das menschliche Immunsystem sehr leicht zu erkennen, da ihre Zellen von einer festen Zellwand aus Chitin und anderen komplexen Zuckern umgeben sind. Chitin ist sozusagen das Alarmzeichen für das Immunsystem, auf das es mit einem ganzen Arsenal von Abwehrwaffen reagiert. Manche Pilze aber haben offenbar gelernt, dieser für sie fatalen Erkennung zu entgehen: Sie besitzen Enzyme namens Chitin-Deacetylase, mit denen sie einige der Chitin-Bausteine verändern. So entsteht ein sogenanntes Chitosan, ein Biopolymer, das für das Immunsystem unsichtbar ist.

Ein besonders aggressiver Pilz, Cryptococcus neoformans, der vor allem bei immungeschwächten Patienten leicht zu einer tödlichen Infektion führen kann, besitzt gleich vier Gene, die solche Enzyme zu codieren scheinen. Bisher konnten Forscher aber nur für drei von ihnen zeigen, dass sie wirklich Chitin-Deacetylasen sind – die Funktion des vierten Proteins war unbekannt. Wissenschaftlerinnen und Wissenschaftler der Westfälischen Wilhelms-Universität Münster (WWU) haben jetzt dieses vierte Enzym genau untersucht und herausgefunden, dass es sich bei dem Enzym um eine zuvor noch nicht beschriebene Chitosan-Deacetylase handelt. Die Studie ist in der Fachzeitschrift „PNAS“ (Proceedings of the National Academy of Sciences) erschienen.

Anzeige

Hintergrund und Methode
Chitin ist ein Polysaccharid, also ein Riesenmolekül aus tausenden von Einzelzuckern, die wie eine Perlenkette hintereinander aufgereiht sind. Es erfüllt in Pilzzellwänden die gleiche Rolle wie die besser bekannte Zellulose in den Zellwänden von Pflanzen. Im Gegensatz zu Zellulose, die aus dem Einfachzucker Glukose aufgebaut ist, besteht Chitin aus N-Acetylglukosamin-Einheiten, also einem komplizierteren Einfachzucker, der eine basische Aminogruppe trägt, woran ein Essigsäuremolekül gebunden ist. Das Enzym Chitin-Deacetylase entfernt einige der Essigsäuremoleküle in der Chitinkette, jedoch nicht alle, sodass als Produkt Chitosan entsteht. Chitosan setzt sich also aus zwei verschiedenen Einfachzuckern zusammen: dem Chitin-Baustein N-Acetylglukosamin und dem Chitosan-Baustein Glukosamin.

Die Forscher um Prof. Dr. Bruno Moerschbacher vom Institut für Biologie und Biotechnologie der Pflanzen der WWU entwickelten biotechnologische Methoden, um solche Gene in das Bakterium E. coli einzubringen und die in diesen Bakterien produzierten Enzyme im Detail zu charakterisieren. Mithilfe Massenspektrometrie sequenzierten sie die Produkte der Enzyme, entschlüsselten also die Abfolge von Chitin- und Chitosan-Bausteinen. Im Anschluss konnten sie die Bioaktivitäten der Produkte analysieren und so die Zusammenhänge zwischen ihren Strukturen auf der einen Seite und ihren Funktionen auf der anderen Seite verstehen.

„Offenbar benötigen die Chitin-Deacetylasen mehrere Chitin-Bausteine hintereinander in der Kette, um das Molekül anzugreifen und eine Essigsäure zu entfernen“, erklärt Biochemiker Bruno Moerschbacher. „Daher bleiben am Ende immer einige Chitin-Bausteine übrig. Die neue Chitosan-Deacetylase kann dann diese letzten Essigsäure-Moleküle auch noch entfernen.“ Der Verdacht lag auf der Hand, dass erst dieser letzte Schritt den Pilz wirklich für das menschliche Immunsystem unsichtbar macht. Und tatsächlich: In Zusammenarbeit mit Dermatologen des Universitätsklinikums Hamburg-Eppendorf konnten die Forscher zeigen, dass ein Chitosan, das noch viele Essigsäuremoleküle trägt, das Immunsystem sogar stärker stimuliert als Chitin. Erst die Behandlung mit der Chitosan-Deacetylase führt zu einem Produkt, das das Abwehrsystem nicht mehr aktiviert.

Die Chitosan-Deacetylase ist also ein entscheidendes Werkzeug des Pilzes, um seinen Wirt unter dem Chitin-Radar von dessen Immunsystem zu befallen. Die vollständige Entfernung der Essigsäuremoleküle aus dem Chitin wirkt wie eine Art Tarnkappe, die den Pilz für das Immunsystem unsichtbar macht. „Damit wird die Chitosan-Deacetylase zu einem interessanten Ziel für neue Medikamente“, betont Dr. Christian Gorzelanny vom Universitätsklinikum Hamburg-Eppendorf, der zuvor in der Forschergruppe von Bruno Moerschbacher an der WWU tätig war. Lea Hembach, Doktorandin in Münster und Erstautorin der Studie, ergänzt: „Ein Fungizid auf Basis eines Stoffs, der gezielt dieses Enzym hemmt, wäre für den Menschen und andere Organismen überhaupt nicht schädlich, da sie ein solch seltenes Enzym gar nicht haben.“

In einem neuen Projekt, das von der Bioinformatikerin Dr. Ratna Singh geleitet wird, suchen die münsterschen Forscher bereits nach einem solchen Hemmstoff. Darüber hinaus hofft Bruno Moerschbacher, dass es seiner Arbeitsgruppe gelingen wird, ein besonders stark immunstimulierendes „Designer“-Chitosan zu entwickeln.

Originalpublikation:
L. Hembach et al. (2020). Unique subsite specificity and potential natural function of a chitosan deacetylase from the human pathogen Cryptococcus neoformans. PNAS; DOI: 10.1073/pnas.1915798117

Quelle: Westfälische Wilhelms-Universität Münster

Anzeige

Das könnte Sie auch interessieren

Anzeige

Enzymforschung

Enzym der Zellatmung isoliert

Forscher der Goethe-Universität haben das vielleicht älteste Enzym der Zellatmung gefunden. Aus dem hitzeliebenden Bakterium Thermotoga maritima konnten sie jetzt einen äußerst fragilen Proteinkomplex namens „Rnf“ isolieren.

mehr...
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige