Labo Online - Analytic, Labortechnik, Life Sciences
Home> Labortechnik> Physikalische Messtechnik>

Masse eines seltsamen Atomkerns neu bestimmt

Terahertz-KalorimetrieWie sich Wasser in der Umgebung von gelösten Molekülen verhält

Hat Idee des Terahertz-Kalorimeters realisiert: Martina Havenith

Chemikerinnen und Chemiker der Ruhr-Universität Bochum haben eine neue Methode entwickelt, mit der sie Veränderungen in der Energie und Struktur von Wassermolekülen in der Umgebung gelöster Moleküle erfassen können. 

…mehr

ElementarteilchenphysikMasse eines seltsamen Atomkerns neu bestimmt

Einer internationalen Gruppe Physikern ist es am Mainzer Institut für Kernphysik gelungen, die Masse eines „seltsamen“ Atomkerns mit einer neuartigen Messmethode zu bestimmen, die eine wesentlich größere Genauigkeit als bisherige Methoden aufweist.

sep
sep
sep
sep
Teilchenbeschleuniger MAMI

Am Teilchenbeschleuniger MAMI ließ sich der radioaktive Zerfall von künstlich erzeugten, überschweren Wasserstoff-Atomkernen weltweit zum ersten Mal mit einer Kombination mehrerer magnetischer Spektrometer beobachten. Über das genaue Vermessen der Zerfallsprodukte konnte die Masse präzise ermittelt werden.

Solche Messungen sind besonders hilfreich für das Verständnis der „starken Kraft“, welche die Atomkerne zusammenhält und so verantwortlich ist für die Beständigkeit der Materie. Auch nach Jahrzehnten der Forschung sind viele grundsätzliche Details dieser Kraft noch nicht verstanden.

Atomkerne der uns alltäglich umgebenden Materie bestehen aus zwei Bausteinen, den positiv geladenen Protonen und den elektrisch neutralen Neutronen. Diese wirken auf vielfältige Weise miteinander und untereinander. Hauptsächlich herrscht zwischen ihnen eine ungeheure Anziehungskraft, die für die Bindung der Bausteine zu Atomkernen verantwortlich ist.

Anzeige

Die Masse des Atomkerns ist dabei geringer als die Summe der Masse seiner Bestandteile. Die „fehlende Masse“ steckt nach Einsteins berühmter Formel E = mc2 in der Energie der Bindungen im Atomkern. Wird die Masse präzise vermessen, lässt sich also die Bindungsenergie bestimmen, und es lassen sich Rückschlüsse auf die Natur der starken Kraft ziehen.

Neben den Protonen und Neutronen können prinzipiell auch andere verwandte Teilchen in einem Atomkern gebunden sein, etwa ein sogenanntes Hyperon, das auch als „seltsames“ Neutron bekannt ist. Einen solchen Atomkern nennt man dann einen seltsamen Atomkern oder auch Hyperkern. An Teilchenbeschleunigern wie MAMI ist es möglich, diese künstlich zu erzeugen.

Seltsame Teilchen können auf der Erde nur für einen Bruchteil einer Sekunde existieren, aber möglicherweise gibt es große Vorkommen tief im Innern von Neutronensternen, die ebenso von der starken Kraft zusammen gehalten werden. Viele offene Fragen zu diesen spektakulären Sternenleichen aus den Tiefen des Alls sind bislang unbeantwortet: Wie groß sind Neutronensterne? Was befindet sich in ihren nicht beobachtbaren Zentren? Wie heiß und dicht ist es dort? Über das Studium der Hyperkerne lassen sich sonst unzugängliche Details der starken Kräfte bestimmen, welche nicht nur in seltsamen Atomkernen, sondern auch in Neutronensternen wirken. Somit werden die Fragen angegangen, wie man den Aufbau von winzigen Atomkernen und von gigantischen Neutronensternen verstehen kann und wie beides zusammenhängt.

Am Mainzer Mikrotron haben die Wissenschaftler um Univ.-Prof. Dr. Josef Pochodzalla und PD Dr. Patrick Achenbach eine sehr schwere Form des gewöhnlichen Elements Wasserstoff erzeugt, dessen Kern aus einem Proton, zwei Neutronen und einem Hyperon besteht. Dieser künstlich geschaffene seltsame Atomkern hat eine etwa doppelt so große Masse wie die schwerste stabil in der Natur vorkommende Form des Wasserstoffs, das Deuterium.

Um die Masse des seltsamen Wasserstoff-Atomkerns möglichst exakt bestimmen zu können, beobachteten die Kernphysiker den radioaktiven Zerfall des Atomkerns erstmals mit mehreren magnetischen Spektrometern zugleich. Diese Geräte funktionieren hier ähnlich wie Elektronenmikroskope, allerdings in einem viel größeren Maßstab: Sie lenken die Teilchen durch ein starkes Magnetfeld ab und bündeln sie an einer Stelle, an der Teilchendetektoren sie vermessen. Für eine möglichst große Genauigkeit sind die Spektrometer nahezu 15 Meter hoch und wiegen über 200 Tonnen. Weitere Voraussetzung für eine äußerst präzise Messung ist die große Energie, Schärfe und Stabilität des beschleunigten Teilchenstrahls, wie sie an MAMI erreicht wird.

Als Ergebnis der Mainzer Messung konnte die Bindungsenergie des Hyperons im sehr schweren Wasserstoff-Atomkern bestimmt werden. Sie ist etwa gleich groß wie die gesamte Bindungsenergie des Deuterium-Atomkerns. Für die Wissenschaftler ganz besonders spannend ist die noch unbeantwortete Frage, ob diese Bindungsenergie sich verändert, wenn das Hyperon statt in einen Wasserstoff-Atomkern in einen gleich schweren Helium-Atomkern eingebettet wird. Das würde dann bedeuten, dass die Anziehungskraft der Protonen und Neutronen auf das Hyperon im Atomkern unterschiedlich – und die Symmetrie zwischen den Kernbausteinen gebrochen wäre.

Veröffentlichung:
A. Esser et al. (Kollaboration A1): Observation of Λ-H-4 Hyperhydrogen by Decay-Pion Spectroscopy in Electron Scattering. Physical Review Letters, 9. Juni 2015. DOI: 10.1103/PhysRevLett.114.232501.

Weitere Informationen:
PD Dr. Patrick Achenbach
Institut für Kernphysik
Johannes Gutenberg-Universität Mainz
55099 Mainz
E-Mail: patrick@kph.uni-mainz.de
http://www.kph.uni-mainz.de

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Beschleunigermodul

Neuer Elektronenbeschleuniger an der...Erster Meilenstein erreicht

Mit dem Startschuss für die Herstellung zweier supraleitender Beschleunigermodule für den zukünftigen Elektronenbeschleuniger MESA an der JGU geht das Projekt MESA in die nächste Phase.

…mehr
Vakuumlösungen für Teilchenbeschleuniger: Turbopumpen von Pfeiffer Vacuum für das CERN

Vakuumlösungen für TeilchenbeschleunigerTurbopumpen von Pfeiffer Vacuum für das CERN

Pfeiffer Vacuum hat erneut einen Auftrag vom CERN über Turbopumpen und Turbopumpstände erhalten. Das CERN bei Genf und ist das weltgrößte Forschungszentrum für Teilchenphysik. Die Hauptaufgabe des CERN besteht in der Erforschung der Materie, aus der das Universum besteht.

 

…mehr

Nuklearer TaktgeberBasis für neuartige Kernuhr

LMU-Forscher messen erstmals die Lebensdauer eines exotischen Atomkern-Zustands: Eine wesentliche Voraussetzung, um eine Kernuhr entwickeln zu können, die Zeit noch genauer misst als die heutigen Atomuhren.

…mehr
BASE-Experiment

Beitrag zur Materie-Antimaterie-FrageMagnetische Kraft von Antiprotonen genauestens bestimmt

So offensichtlich es ist, dass Materie existiert, ebenso rätselhaft ist noch immer ihre Herkunft. Denn eigentlich hätte nach den Prinzipien der Teilchenphysik bei der Entstehung des Weltalls genauso viel Materie wie Antimaterie gebildet werden müssen.

…mehr
Aufgezeichneter Zerfall eines W-Bosons mit dem ATLAS-Detektor am LHC: Für die Bestimmung der W-Boson-Masse wurden mehr als 10 Millionen Ereignisse dieser Art vermessen und untersucht. (Abb./©: ATLAS Collaboration)

TeilchenphysikW-Boson-Messung bestätigt das Standardmodell

Es ist ein großer Erfolg und eine kleine Enttäuschung zugleich: Nach fünfjähriger Arbeit konnten Physiker am Forschungszentrum CERN am Dienstag dem internationalen Fachpublikum eine Hochpräzisionsmessung der Masse des W-Bosons vorstellen.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung