Labo Online - Analytic, Labortechnik, Life Sciences
Home> Life Sciences> Zell- und Mikrobiologie>

Arbeitsteilung im modularen Bioreaktor - Produktion pharmazeutisch aktiver Naturstoffe

Arbeitsteilung im modularen BioreaktorProduktion pharmazeutisch aktiver Naturstoffe

Wissenschaftler des KIT und der Firma Phyton Biotech bilden komplexe Pflanzengewebe mit Hilfe eines mikrofluidischen Bioreaktors nach, um pflanzliche Wirkstoffe gegen Krebs und Alzheimer effektiver gewinnen zu können.

sep
sep
sep
sep
Der mikrofluidische Bioreaktor ahmt Pflanzengewebe technisch nach. Im neuen Projekt machen die Forscher nun den nächsten Schritt (Bild: KIT).

Pflanzen produzieren zahlreiche Substanzen, die sich bei der Behandlung von Krebs, Alzheimer oder Parkinson einsetzen lassen. Doch häufig sind die Stoffwechselwege zur Zielsubstanz so komplex, dass ihre biotechnologische Herstellung wenig effektiv und kostenintensiv ist. Mithilfe eines innovativen mikrofluidischen Bioreaktors aus miteinander gekoppelten Modulen ahmen die Wissenschaftler komplexes Pflanzengewebe jetzt technisch nach, um Wirkstoffe gegen Krebs oder Alzheimer effektiver und günstiger zu gewinnen als bislang.

Zu komplex für konventionelle Fermenter
Häufig sind die zugrunde liegenden Stoffwechselwege sehr komplex: Die Substanz von Interesse ist in der natürlichen Pflanze meist das Produkt einer langen Kette von Zwischenschritten mit ebenso vielen immer wieder umgewandelten Zwischenprodukten. Die dafür nötigen chemischen Prozesse finden zudem auch nicht unbedingt in einer einzigen Pflanzenzelle statt, sondern können von der Wurzel bis zum Blatt über das gesamte Pflanzengewebe auf spezialisierte Zelltypen verteilt sein.

Anzeige

Das Unternehmen Phyton Biotech konnte bereits vor vielen Jahren zeigen, dass sich pflanzliche Arzneistoffe wie Taxol® auch ressourcenschonend und nachhaltig - durch Kultivierung von Pflanzenzellen im Labor - herstellen lassen. „Für bestimmte Substanzen gilt jedoch, dass sie sich weder in einer einfachen Zellkultur noch in gentechnisch manipulierten Mikroorganismen abbilden lassen, weil die Stoffwechselwege zu komplex sind“, sagt Peter Nick, Professor für Molekulare Zellbiologie am Botanischen Institut des KIT.

„In einem neuen Forschungsprojekt wollen wir deshalb ein Pflanzengewebe mit unterschiedlichen Zelltypen technisch nachbilden - mit einem sogenannten mikrofluidischen Bioreaktor. Dieser besteht aus einer Reihe von Modulen, in denen je ein Zelltyp kultiviert wird. Die Module sollen über Kanäle miteinander verbunden sein. Ziel ist es, dass Stoffwechselprodukte eines Zelltyps in das nächste Modul gelangen und dort weiterverarbeitet werden, ohne dass sich die unterschiedlichen Zelltypen vermischen. Die Zielsubstanz könnte dann zum Beispiel aus dem Durchfluss extrahiert und somit ‚geerntet' werden.“

Ziel: kostengünstiger und effektiver
Das Projekt wird vom Projektträger Jülich (PtJ) betreut und vom Bundesministerium für Bildung und Forschung über zwei Jahre mit 750000 Euro gefördert. Projektpartner sind das Botanische Institut, das Institut für Mikrostrukturtechnik (beide KIT) und das Unternehmen Phyton Biotech GmbH. Zusammen decken die drei Partner die für das Projekt nötige Expertise komplett ab. Das Botanische Institut bringt seine Erfahrung in der molekularen Zellbiologie pflanzlicher Zellkulturen ein. Prof. Andreas Guber und Dr. Ralf Ahrens vom Institut für Mikrostrukturtechnik sind für die Entwicklung und Fertigung der Teilkomponenten der mikrofluidischen Bioreaktoren sowie deren Mikro-Montage und Verschaltung zu einem funktionsfähigen Gesamtsystem zuständig. Die Phyton Biotech als Industriepartner ist führend im Bereich Pflanzenzellfermentation und liefert die nötige Expertise und Infrastruktur, um die Anwendungsmöglichkeiten auf industriellem Maßstab auszuloten.

„Wir glauben, dass wir in dieser Kooperation mit den Experten des KIT die Nutzung von kontrolliert kultivierten Pflanzenzellen auf eine neue Ebene stellen können“, sagt Dr. Gilbert Gorr, Leiter für Forschung und Entwicklung bei Phyton. „Die Zugänglichkeit zu weiteren Naturstoffen zu ermöglichen, die bisher nur unter größten Schwierigkeiten und Kosten produziert werden können, ist unser gemeinsames Ziel“.

Phyton Biotech ist als Hersteller von qualitativ hochwertigen aktiven pharmazeutischen Inhaltsstoffen durch Pflanzenzellfermentation ein weltweiter Lieferant für Paclitaxel und Docetaxel. Neben der Produktion bietet Phyton auch Entwicklungsdienste für Kunden an. Diese umfassen die Entwicklung von pflanzlichen Zelllinien und Fermentationsprozessen für pflanzliche Inhaltsstoffe, aber auch die Entwicklung von Syntheseprozessen komplexer Substanzen.

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Fraktionen nahtlos verpacken und mehr: Meine HPLC tropft

Fraktionen nahtlos verpacken und mehrMeine HPLC tropft

Koppelt man die hochdruckstabile Chip-HPLC an die Tröpfchenmikrofluidik, entsteht eine neue Technologie. Sie vereint die mikrofluidische Welt der Trenntechniken mit der Welt der Tropfenmikrofluidik.

…mehr
Antibiotika-Resistenzen: Lab-on-a-Chip-System für schnelle Medikamenten-Auswahl

Antibiotika-ResistenzenLab-on-a-Chip-System für schnelle Medikamenten-Auswahl

Ein neuartiger Schnelltest gibt innerhalb von dreieinhalb Stunden Auskunft darüber, welches verfügbare Antibiotikum im konkreten Fall noch wirksam ist.

…mehr
Dechema-Preis für Timothy Noël: Skalierbare Chemiefabrik mit Photomikroreaktoren

Dechema-Preis für Timothy NoëlSkalierbare Chemiefabrik mit Photomikroreaktoren

Professor Timothy Noël von der Technischen Universität Eindhoven/NL erhält den Dechema-Preis 2017. Damit werden seine Arbeiten zur kontinuierlichen photochemischen Umwandlung in mikrofluidischen Systemen gewürdigt.

 

…mehr
Organ-on-a-chip

Komplexe Organfunktionen nachgebildetLeber auf dem Chip ersetzt Tierversuche

PD Dr. Alexander Mosig vom Universitätsklinikum Jena erhält den mit 25 000 Euro dotierten Tierschutz-Forschungspreis des Bundesministeriums für Ernährung und Landwirtschaft. Der Preis würdigt die von dem Forscher und seiner Arbeitsgruppe entwickelten Biochips, die komplexe Organfunktionen nachbilden - und Tierversuche beschränken helfen.

…mehr
Schematic of the working principle of a standard magnetic biosensor

Recent Advances inMagnetic Microfluidic Biosensors

Scientific research, driven by the promise for miniaturization and integration of complex laboratory equipment on inexpensive, reliable, and accurate devices, has successfully shifted several analytical and diagnostic methods to the submillimeter scale.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung