Labo Online - Analytic, Labortechnik, Life Sciences
Home> Life Sciences> Zell- und Mikrobiologie>

Bakterien - Großprojekt erforscht Binnenstruktur

Molekular orientierte ZellforschungGroßprojekt erforscht Binnenstruktur von Bakterien

Die interne Organisation von Bakterien und deren Dynamik steht im Fokus eines neuen hochschulübergreifenden Sonderforschungsbereichs (SFB/Transregio 174), für den sich Arbeitsgruppen aus Marburg, Gießen und München zusammengetan haben. Die Deutsche Forschungsgemeinschaft (DFG) fördert das Konsortium mit 6,4 Mio. Euro.

sep
sep
sep
sep
Fluoreszenzmikroskop

Sprecher des Verbunds mit dem Titel „Räumlich-zeitliche Dynamik von Bakterienzellen“ ist der Mikrobiologe-Professor Dr. Martin Thanbichler von der Philipps-Universität Marburg. Die DFG unterstützt außerdem weiterhin den bereits bestehenden Sonderforschungsbereich der Universitäten Marburg und Gießen zu RNA-Viren (SFB 1021).

„Die Bewilligung des neuen Transregio-Sonderforschungsbereichs ist ein erneuter Beleg dafür, wie außerordentlich forschungsstark unsere Universitäten in der Mikrobiologie sind“, sagt Prof. Dr. Michael Bölker, Marburger Vizepräsident für Forschung, der auch der Steuerungsgruppe des kürzlich gegründeten Forschungscampus Mittelhessen angehört. „Es hat sich als richtig erwiesen, dass wir in den vergangenen Jahren konsequent auf die Stärkung einer molekular orientierten Zellforschung gesetzt haben.“

Anzeige

Das Innenleben von Bakterien galt lange als ungeordnete Ansammlung von Enzymen und anderen Makromolekülen. „Zwar weiß man seit Jahrzehnten, dass Proteine gezielt auf bestimmte Bereiche innerhalb der Bakterienzelle, wie etwa die Zellhülle oder das Zellinnere, verteilt werden“, legt Verbundsprecher Martin Thanbichler dar; „aber innerhalb dieser Binnenräume sah man ihre Anordnung bis vor wenigen Jahren als weitgehend zufällig an. Dabei zeigen neue Ergebnisse, dass bakterielle Zellen viele ihrer Bestandteile mit außerordentlicher Präzision und in zeitlich variablen Mustern im dreidimensionalen Raum positionieren.“

Diese Binnengliederung steuert entscheidende zelluläre Prozesse, etwa Zellteilung und Wachstum. Ihr Verständnis schafft daher wichtige Grundlagen für die Entwicklung neuer Antibiotika oder das Design künstlicher Bakterien für technische Anwendungen.

„Unser mangelndes Wissen war bislang vor allem eine Folge technischer Beschränkungen“, erklärt Thanbichler. Dem soll das neue Konsortium abhelfen, wie Prof. Dr. Kirsten Jung von der Ludwig-Maximilians-Universität München erläutert, stellvertretende Sprecherin des Sonderforschungsbereichs: „Jüngste Fortschritte in Mikroskopie und Bildgebungsverfahren eröffnen ganz neue Möglichkeiten, mit hoher Genauigkeit und im Detail darzustellen, wo sich Zellkomponenten befinden und wie sich deren Position über die Zeit verändert.“

Der Sonderforschungsbereich führt sieben Arbeitsgruppen aus Marburg und eine aus Gießen mit acht Münchner Teams von der Ludwig-Maximilians-Universität, der Technischen Universität sowie dem Max-Planck-Institut für Biochemie zusammen. Sie treten an, um die Mechanismen aufzuklären, mit denen Moleküle in den Bakterienzellen verteilt werden.

Aus den experimentell ermittelten Daten sollen theoretische Modelle entwickelt werden, die zeigen, wie die Vielzahl miteinander interagierender Faktoren zu einer funktionalen Einheit integriert werden. „Um zu testen, ob wir das Zusammenwirken richtig verstanden haben, sollen ausgewählte Systeme dann nachgebaut werden“, erläutert Thanbichler.

Der Verbund greift hierfür auf umfangreiches Know-how in der mikroskopischen Analyse lebender Zellen, in der Protein-Biochemie, in mathematischer Modellrechnung und synthetischer Biologie zurück, wie es etwa im Marburger „LOEWE-Zentrum für Synthetische Mikrobiologie“ aufgebaut worden ist.

Prof. Dr. Martin Thanbichler lehrt Mikrobiologie an der Philipps-Universität Marburg und gehört dem LOEWE-Zentrum „Synmikro“ an. Im vergangenen Jahr wurde er zum „Fellow“ der Max-Planck-Gesellschaft berufen.

Neben dem neu eingerichteten Sonderforschungsbereich fördert die DFG weiterhin den bestehenden Verbund „RNA Viren: Metabolismus viraler RNA, Immunantwort der Wirtszellen und virale Pathogenese“ (SFB 1021), der seit dem Jahr 2013 an den Universitäten in Marburg und Gießen angesiedelt ist. Das Konsortium, das vom Marburger Virologen Professor Dr. Stephan Becker koordiniert wird, erhält 9,1 Mio. Euro für weitere vier Jahre.

Das Institut für Virologie der Philipps-Universität, das über eines der wenigen europäischen Laboratorien der höchsten Sicherheitsstufe verfügt, ist Partner im Deutschen Zentrum für Infektionsforschung (DZIF). Die Marburger Virologie ist an einer Studie beteiligt, die erst kürzlich den Nachweis erbrachte, dass der Impfstoff „VSV-ZEBOV“ gegen das Ebola-Virus wirkt. Eine bibliometrische Studie ergab jüngst, dass die Philipps-Universität in der Ebola-Forschung weltweit an der Spitze der Zitierungen pro Fachveröffentlichung liegt.

Der Forschungscampus Mittelhessen ist eine gemeinsame Einrichtung der Justus-Liebig-Universität Gießen, der Philipps-Universität Marburg und der Technischen Hochschule Mittelhessen zur Stärkung der regionalen Verbundbildung insbesondere in der Forschung und der Nachwuchsförderung.

Weitere Informationen:
Ansprechpartner SFB / TRR 174:
Prof. Dr. Martin Thanbichler,
Philipps-Universität Marburg , Fachgebiet Mikrobiologie
E-Mail: thanbichler@uni-marburg.de

Prof. Dr. Kirsten Jung
Ludwig-Maximilians-Universität München , Lehrstuhl Mikrobiologie
E-Mail: jung@lmu.de

Ansprechpartner SFB 1021:
Prof. Dr. Stephan Becker
Institut für Virologie der Philipps-Universität Marburg
E-Mail: becker@staff.uni-marburg.de

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Biomarker

Leuchtsignale aus der lebenden ZelleFluoreszierende Proteinmarker unter Hochdruck eingeschleust

Bestimmte Proteine in der Zelle aufzuspüren, gleicht der Suche nach einer Nadel im Heuhaufen. Um Proteine orten und ihre Funktion in der lebenden Zelle entschlüsseln zu können, versuchen Forscher, sie mit fluoreszierenden Molekülen zu markieren.

…mehr
Beobachtung von einzelnen Histidin-markierten Zytoskelletmolekülen mit Hilfe der Super-Resoltuion-Mikroskopie (dSTORM).

Verbessert Beobachtung von ProteinenLeuchtende Miniatursonden für die dSTORM-Mikroskopie

Um Proteine im Mikroskop sichtbar zu machen, werden sie meist auf DNA-Ebene mit fluoreszierenden Proteinen fusioniert. Allerdings sind diese leuchtenden Marker relativ groß, so dass sie die Funktion der Proteine beeinträchtigen können.

…mehr
dSTORM-Mikroskopie: Nanokosmos der Zellen unter der Lupe

dSTORM-MikroskopieNanokosmos der Zellen unter der Lupe

Mit einer neuen Technik ist Wissenschaftlern der Universität Würzburg ein bislang einmaliger Blick auf Membranen menschlicher Zellen gelungen. Die von ihnen entwickelte Technik macht einzelne verzuckerte Proteine und Lipide mit molekularer Auflösung sichtbar.

…mehr
Mikroskopaufnahme von Staphylococcus aureus

BiohysikBeharrliche Winzlinge: Wie krankmachende Bakterien mit Proteinen an den Zielmolekülen ihres Wirtes "kleben"

LMU-Forscher haben den physikalischen Mechanismus entschlüsselt, mit dem sich ein weit verbreiteter Krankheitserreger an sein Zielmolekül im menschlichen Körper bindet. Damit legt die Studie Grundlagen z.B. für die Entwicklung neuartiger Therapien bei Infektionen mit Staphylokokken. 

…mehr
Mann und Frau an der Kinderwiege

Medikamentöse GeburtenkontrolleErste hormonfreie Verhütungspille für den Mann kommt aus Australien

Dank der Forschungsarbeit von Wissenschaftlern der Monash University in Melbourne könnte die hormonfreie Verhütungspille für den Mann schon bald Realität werden.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung