Labo Online - Analytic, Labortechnik, Life Sciences
Home> Life Sciences> Zell- und Mikrobiologie>

Schäden durch Röntgenstrahlung bei Biomolekülen

Schäden durch RöntgenstrahlungElektronische Zerfallsprozesse untersucht

Welche Vorgänge laufen im Detail ab, wenn Röntgenstrahlung an Biomolekülen mit einem Metallzentrum Strahlenschäden verursacht? Dieser Frage ist ein Wissenschaftlerteam am Physikalisch-Chemischen Institut der Universität Heidelberg nachgegangen.

sep
sep
sep
sep
Absorption eines einzigen Röntgenphotons

Die Forscher haben dazu die zugrundeliegenden elektronischen Zerfallsprozesse, die durch Absorption der Röntgenstrahlung ausgelöst werden, mit quantenchemischen Methoden untersucht. Dabei hat sich gezeigt, dass das Metallzentrum eine entscheidende Rolle bei der Zerstörung des Moleküls spielt. Die Forschungsergebnisse von Vasili Stumpf, Dr. Kirill Gokhberg und Prof. Dr. Lorenz S. Cederbaum wurden in „Nature Chemistry“ veröffentlicht.

Strahlenschäden, die aus der Wechselwirkung von hochenergetischer Röntgenstrahlung mit biologischer Materie entstehen, stellen ein in der Wissenschaft allgemein bekanntes Phänomen dar. Sie treten unter anderem auf, wenn Substrate – wie etwa Proteine – mit Hilfe von Röntgenlicht mit dem Ziel analysiert werden, die elektronische Struktur oder die räumliche Anordnung der Atome zu bestimmen. Diese Schäden zeigen sich verstärkt, so Prof. Cederbaum, in unmittelbarer Umgebung von Metallzentren, die essentiell für die Stabilität und biologische Funktion der Biomoleküle sind.

Anzeige

Die elektronischen Zerfallsprozesse, die damit verbunden sind, haben die Heidelberger Forscher mit Hilfe computergestützter Methoden aus der Quantenchemie untersucht. Im Mittelpunkt standen dabei die Vorgänge, die ablaufen, wenn Röntgenstrahlung durch das Metallzentrum eines Biomoleküls absorbiert – also sozusagen aufgesogen – wird. Als Modellsystem nutzten die Wissenschaftler ein sogenanntes Microcluster. Dabei handelte es sich um ein chemisches System, bei dem Wassermoleküle um ein Metallzentrum – hier das zweifach positiv geladene Magnesiumion – angeordnet sind.

Wie Prof. Cederbaum erläutert, verliert das Metallzentrum durch die Absorption von Röntgenstrahlung zunächst mehrere Elektronen. Dadurch entsteht ein hochgeladenes und hochenergetisches Metallion, das anschließend durch eine Kaskade von elektronischen Zerfallsschritten in seinen ursprünglichen Zustand zurückkehrt. Bei einigen dieser Schritte wird Energie vom Metallzentrum auf die Nachbarmoleküle übertragen – ein Vorgang, der als Interatomic Coulombic Decay (ICD) bezeichnet wird; bei anderen Zerfallschritten, dem sogenannten Electron Transfer Mediated Decay (ETMD), gehen Elektronen der benachbarten Moleküle auf das Metallion über.

Beide Prozesse sind nach den Worten von Prof. Cederbaum ultraschnell und laufen auf einer Skala von Femtosekunden ab. Sie lassen damit nur extrem wenig Zeit für die Bestimmung der genauen Molekularstruktur. Im Laufe der Zerfallskaskade geben mehrere Nachbarmoleküle sowohl durch ICD- als auch durch ETMD-Prozesse langsame Elektronen ab. Die Moleküle laden sich also positiv auf, was zu einem Auseinanderbrechen des Microclusters führt.

In einem größeren System, etwa einem Protein mit einem Metallzentrum, würden die positiv geladenen Nachbarmoleküle und die langsamen Elektronen mit dem Biomolekül reagieren und weitere Sekundärschäden anrichten, wie Prof. Cederbaum erläutert. Das Metallzentrum wirkt somit wie eine Linse, die die Energie des Röntgenlichts auf die unmittelbare Umgebung fokussiert. Dadurch wird die umgebende chemische Struktur auf einer schnellen Zeitskala massiv verändert.

„Wir gehen davon aus, dass der von uns identifizierte Mechanismus eine wichtige Rolle für Strahlenschäden in biologischen Bausteinen mit Metallatomen spielt, darunter vor allem Proteine und die DNA“, sagt Prof. Cederbaum. Die Wissenschaftler hoffen, dass diese Erkenntnisse einen Beitrag leisten zur Entschlüsselung der komplizierten Prozesse, die in lebenden Organismen durch Röntgenstrahlung ausgelöst werden.

Originalpublikation:
V. Stumpf, K. Gokhberg und L.S. Cederbaum: The role of metal ions in X-ray-induced photochemistry. Nature Chemistry 8, 237-241 (2016), doi:10.1038/nchem.2429.

Kontakt:
Prof. Dr. Lorenz Cederbaum
Physikalisch-Chemisches Institut der Universität Heidelberg
E-Mail: lorenz.cederbaum@pci.uni-heidelberg.de

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Röntgenfokus

Starke Bündelung von RöntgenstrahlungNeuartige Röntgenlinse schärft Blick in den Nanokosmos

Eine neuartige Röntgenlinse liefert schärfere und hellere Bilder aus dem Nanokosmos. Die Linse kann dank eines innovativen Konzepts besonders viel Röntgenstrahlung scharf bündeln und erreicht eine hohe räumliche Auflösung und eine hohe Lichtstärke.

…mehr

Weitere Beiträge zu dieser Firma

Die Abbildung zeigt den winzig kleinen Teil eines Fliegengehirns.

Schaltplan des Gehirns erstellenNeuer Algorithmus für die Bilddaten-Auswertung

Eine genaue Kenntnis der Verknüpfungen im Gehirn – der Verbindungen zwischen allen Nervenzellen – gilt als Voraussetzung für ein besseres Verständnis dieses komplexesten aller Organe. 

…mehr
Quantendynamik

QuantenlegoMaterie aus einzelnen Atomen gebastelt

Die Bewegungen mehrerer, miteinander wechselwirkender Körper zu verstehen, gehört zu den Forschungsfragen der Physik. Während das Verständnis der Himmelskörper im Vordergrund stand, hat diese Fragestellung in quantenmechanischen Vielteilchensystemen seine Entsprechung gefunden.

…mehr

Weitere Beiträge in dieser Rubrik

Celldisc zur Überwachung und Analyse von Massenzellkulturen

Analytica 2018 – Halle A3, Stand 314Für die erfolgreiche Arbeit im diagnostischen und im pharmazeutischen Labor

Die Greiner Bio-One GmbH, Technologiepartner für die diagnostische und pharmazeutische Industrie, stellt auf der Analytica zahlreiche Produktneuheiten vor, z.B. für die 3D-Zellkultur und das Biobanking. 

…mehr
Antibiotika-Resistenzen: Lab-on-a-Chip-System für schnelle Medikamenten-Auswahl

Antibiotika-ResistenzenLab-on-a-Chip-System für schnelle Medikamenten-Auswahl

Ein neuartiger Schnelltest gibt innerhalb von dreieinhalb Stunden Auskunft darüber, welches verfügbare Antibiotikum im konkreten Fall noch wirksam ist.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung