Wie man Proben und mobile Phasen optimal für die UHPLC vorbereitet

Dieser Artikel beschreibt die bestmöglichen Methoden, die eine ordnungsgemäße und effiziente Vorbereitung der Proben und mobilen Phasen für UHPLC-Analysen gewährleisten. Aufgrund der kleineren Partikelgröße des Packmaterials und der geringeren Säulendurchmesser sind UHPLC-Systeme für Verstopfungen durch Verunreinigungen äußerst anfällig. Die Auswahl der optimalen Filtrationsmethode für Proben und mobile Phasen für die UHPLC ist deshalb von besonderer Bedeutung.

" />

Filtrationssystem für HPLC-Proben Samplicity

UHPLC erhöht den Standard

Wie man Proben und mobile Phasen optimal für die UHPLC vorbereitet
Bild 1. Die Filtration einer 0,3-µm-Polystyren-Latex-Suspension mithilfe verschiedener 0,2-µm-Spritzenvorsatzfilter zeigt charakteristische Unterschiede in der Membranretention.

PhD Vivek Joshi*) und Estelle Riche**)

  1. Leitender Wissenschaftler im Geschäftsfeld Bioscience, Merck Millipore, E-Mail: vivek.joshi@merckgroup.com.
  1. Leitende Wissenschaftlerin im Geschäftsfeld Laborwasser, Merck Millipore.


Dieser Artikel beschreibt die bestmöglichen Methoden, die eine ordnungsgemäße und effiziente Vorbereitung der Proben und mobilen Phasen für UHPLC-Analysen gewährleisten. Aufgrund der kleineren Partikelgröße des Packmaterials und der geringeren Säulendurchmesser sind UHPLC-Systeme für Verstopfungen durch Verunreinigungen äußerst anfällig. Die Auswahl der optimalen Filtrationsmethode für Proben und mobile Phasen für die UHPLC ist deshalb von besonderer Bedeutung.
Anzeige

Die UHPLC (Ultra High Performance Chromatography) bietet im Hinblick auf die Laufgeschwindigkeit und Auflösung bedeutende Vorteile. Chromatographieläufe, die vor einigen Jahren noch 5...20 min gedauert hätten, erfordern heute nur einen Bruchteil dieser Zeit. Die höhere Auflösung ermöglicht außerdem eine bessere Trennung der Bestandteile komplexer Gemische.

Die beschleunigte Analysenzeit und die höhere Auflösung der UHPLC machen jedoch eine intensivere Vorbereitung der Proben und mobilen Phasen erforderlich. Nur so können Systemstillstandszeiten vermieden und eine hohe Qualität der Ergebnisse gewährleistet werden. Optimale Filtrationsmethoden für Proben und mobile Phasen sind daher essentiell.

Die extrem niedrigen Nachweisgrenzen der UHPLC erfordern es, dass auch die Qualität der Reagenzien berücksichtigt werden muss. Reinstwasser nimmt den größten Volumenanteil der mobilen Phase ein und spielt eine wesentliche Rolle bei der Analyse von Blindproben, der Probenverdünnung, dem Ansetzen von Puffern sowie der Zubereitung von Standardlösungen. Zur Gewährleistung präziser und reproduzierbarer Ergebnisse muss das für die UHPLC verwendete Wasser von höchster Qualität sein.

Die kürzere Laufzeit der UHPLC erfordert auch einen höheren Durchsatz bei der Probenvorbereitung. Gebräuchliche Probenvorbereitungssysteme wie Spritzenvorsatzfilter sind mühsam und zeitaufwändig und können mit dem höheren Durchsatz nicht Schritt halten.

Probenvorbereitung

In der UHPLC sind die Klärfiltration und Abtrennung feiner Partikel unerlässliche Schritte zur Vermeidung von Säulenverstopfungen und Systemstillstandszeiten. Andere Probenvorbereitungsmethoden (Festphasenextraktion und Flüssig-Flüssig-Extraktion) reduzieren die Komplexität der Proben, wodurch ein höheres Signal-Rausch-Verhältnis und eine sauberere Basislinie erzielt werden. Proben dürfen keine interferierenden Matrixbestandteile enthalten, die an die stationäre Phase in der UHPLC-Säule binden können.

Je nach Art und Anzahl der Proben können für die UHPLC-Probenvorbereitung verschiedene Methoden gewählt werden. Dazu gehören die Probenfiltration mit 0,2-µm-Filtern, Proteinfällung mit nachfolgender Zentrifugation oder Filtration, Festphasenextraktion, Ultrafiltration oder Flüssig-Flüssig-Extraktion (Tabelle 1).

Ein wichtiger Aspekt hierbei ist, dass die Rückhalteeigenschaften von Spritzenvorsatzfiltern variieren und damit die Qualität der Probenvorbereitung beeinflusst werden kann. In Bild 1 werden die Filtrationseigenschaften von Spritzenvorsatzfiltern von zwei verschiedenen Herstellern verglichen. Die Daten zeigen, dass bei einem Vergleich von Nylon- und PES-Membranen beide Produkte eine ähnliche Partikelretention (> 95 %) aufweisen. Beim Vergleich von PTFE und PVDF halten die Membranfilter von Hersteller A über 95 % der Partikel zurück, die Membranfilter von Hersteller B jedoch nur etwa 80 %. Die Filter von Hersteller B, die 20 % der Partikel passieren lassen, können zur Verstopfung der Säule führen.

Während der Durchsatz bei Chromatographiesystemen ansteigt, können traditionelle Probenvorbereitungsmethoden kaum Schritt halten, so dass Engpässe im Arbeitsablauf entstehen. Die Filtration mit Spritzenvorsatzfiltern ist eine sehr einfache Methode. Die serielle Probenvorbereitung kann jedoch leicht zum zeitaufwändigsten und mühsamsten Schritt im gesamten analytischen Arbeitsablauf werden. Am anderen Ende des Probenvorbereitungsspektrums stehen Robotersysteme, die kostspielig sein können und Labors, die nur einige Dutzend Proben pro Tag verarbeiten, eine zu große Kapazität bieten.

Jüngste Entwicklungen zur Probenaufbereitung, wie z.B. das Samplicity-Filtrationssystem (Bild 2), ermöglichen eine simultane Vorbereitung der Proben und bieten eine Durchsatzkapazität, die den Anforderungen der meisten Labors entspricht. Mit dem Samplicity-System können bis zu acht Proben gleichzeitig in wenigen Sekunden direkt in LC-Fläschchen vakuumfiltriert werden.

Vorbereitung der mobilen Phase

Im Gegensatz zur HPLC, bei der die Anforderungen an die Filtration der mobilen Phase weniger streng sind, haben typische UHPLC-Säulen kleinere Säulenmaterialzwischenräume und sind mit 0,2-µm-Fritten ausgestattet, die Partikel zurückhalten und daher verstopft werden können. Die Filtration der mobilen Phase mit dem optimalen Membranfilter schützt UHPLC-Systeme vor partikulären Verunreinigungen, die das System verblocken und stilllegen können. Die meisten UHPLC-Hersteller empfehlen zur Vorbereitung der mobilen Phase die Verwendung von Filtern mit einer Porengröße von 0,2 µm.

In einer von Merck Millipore durchgeführten Studie wurden drei gebräuchliche Lösungsmittel (Wasser, Acetonitril und Methanol) zur Vorbereitung der mobilen Phase verwendet und die Auswirkungen der Filtration auf den Rückdruck des UHPLC-Systems analysiert (Bild 3). Unter den beurteilten Membranfiltern zeigte der Filter aus hydrophilem Polytetrafluorethylen (PTFE) die beste Filtrationsleistung, was sich am geringsten Anstieg des Rückdrucks im UHPLC-System zeigte. Filter aus hydrophilem Polypropylen (PP) konnten partikuläre Verunreinigungen in den Lösungsmitteln nicht zurückhalten, was sich am höchsten Anstieg des Rückdrucks unter allen getesteten Filtern zeigte. Filter aus Nylon und hydrophilem Polyvinylidenfluorid (PVDF) zeigten eine mittelmäßige Leistung in Bezug auf die Partikelrückhaltung und den nachfolgenden Druckanstieg. Neben dem geringsten Anstieg des Rückdrucks haben hydrophile PTFE-Filter auch die beste chemische Kompatibilität mit verschiedenen Lösungsmitteln und Mobilphase-Modifikatoren, die in der UHPLC häufig verwendet werden (Tabelle 2).

Bei der Vorbereitung der mobilen Phase für die UHPLC ist die Verwendung hochwertiger Puffersalze ebenfalls äußerst wichtig. Doch selbst bei Einsatz hochwertiger Salze kann die UHPLC-Säule durch das Vorliegen von unlöslichen Verunreinigungen verstopft werden. Daher müssen die Bestandteile der mobilen Phase vor ihrer Verwendung filtriert werden.

Wasserqualität

Wenige Faktoren beeinflussen HPLC-Analysen mehr als Verunreinigungen im Wasser, das für die Herstellung der mobilen Phase verwendet wird. Während eine unzureichende Wasserqualität eines der am einfachsten zu korrigierenden Probleme darstellt, ist es eines der am wenigsten verstandenen Faktoren im analytischen Labor. Berichten zufolge werden 70...80 % der Chromatographieprobleme letztendlich auf die Wasserqualität in Elutionsmitteln, Proben und Standardlösungen zurückgeführt [1].

Die UHPLC wird durch die gleichen Wasserverunreinigungen wie die HPLC beeinflusst, in einigen Fällen jedoch in größerem Ausmaß. Bei Nachweisgrenzen bis zum ppt-Bereich muss das Wasser, das zur Verarbeitung von Blindproben, Verdünnung von Proben, zum Ansetzen von Puffern und Standardlösungen verwendet wird, von höchster Qualität sein. Wasser für die UHPLC sollte frei von partikulären, organischen, bakteriellen und ionischen Verunreinigungen sein.


Partikel
Im Wasser vorhandene Partikel können aufgrund der geringeren Säulenmaterialzwischenräume und dem reduzierten Säulendurchmesser einen bedeutenden Einfluss auf die UHPLC haben. Obwohl UHPLC-Säulen auch bei den für die konventionelle HPLC typischen Fließraten arbeiten, sind sie im Vergleich zu HPLC-Säulen für vorzeitiges Verstopfen durch Partikel anfälliger.

Organische Stoffe
Eine organische Kontamination von Reinstwasser kann chromatographische Trennprozesse auf verschiedene Arten beeinflussen. Organische Moleküle können sich im oberen Teil der Säule ansammeln und später als Verunreinigungs-/Geisterpeaks eluiert werden. Wenn der Gehalt an diesen Stoffen sehr hoch ist, können sie sich wie eine neue stationäre Phase verhalten und eine Verschiebung der Retentionszeit sowie ein Auslaufen der Elutionspeaks (Schulterbildung) verursachen. Des Weiteren kann es auch zu einem Anstieg des Rückdrucks in der Säule kommen, wodurch die Lebensdauer der Säule verringert wird. Zusätzlich können mit Hilfe organisch verunreinigtem Wassers hergestellte Elutionslösungen zu einer reduzierten Peakauflösung und geringeren Empfindlichkeit führen. Es ist deshalb erforderlich, den Gehalt an organischen Verunreinigungen im Wasser für die UHPLC mithilfe eines Online-TOC-Monitors zu überwachen.

Bakterien
Bakterien können die Säule und die Fritten verstopfen und organische Abbauprodukte freisetzen, die wiederum zu den oben beschriebenen Effekten durch organische Verunreinigungen führen können.

Ionische Verunreinigungen
Eine Änderung der Ionenstärke des Elutionsmittels kann einige Auftrennungen beeinflussen. Wenn es sich bei der ionischen Verunreinigung um UV-absorbierende Ionen (z.B. Nitrate, Nitrite) handelt, werden diese als Peak eluiert und die Datenanalyse somit erschwert. Wird ein Massenspektrometer (MS) als Detektor verwendet können neben den protonierten Addukten (z.B. Na+, K+) auch andere Addukte erzeugt werden, die die Datenanalyse beeinflussen können.

Wasseraufbereitungssysteme kombinieren mehrere Aufbereitungstechnologien, die sicherstellen, dass die genannten Wasserverunreinigungen effizient entfernt werden und Wasser des höchstmöglichen Reinheitsgrades erzeugt wird. Ein gutes Vorbehandlungssystem kombiniert Umkehrosmose- und Elektroentionisierungstechnologien (wie z. B. das Elix®-System). Die weitere Aufbereitung des Wassers erfolgt durch ein Polisher-Modul (z.B. ein Milli-Q®-System; Bild 4), das UV-Photooxidation, Ionenaustauscherharze, Aktivkohle und Mikrofiltration an der Entnahmestelle kombiniert.
Die Lagerung von Reinstwasser in Kunststoffbehältern kann die UHPLC ebenfalls beeinträchtigen, da die Behälter auswaschbare Stoffe in das Wasser abgeben können. Glasbehälter sind Kunststoffbehältern vorzuziehen, da sie weniger organische Stoffe abgeben, sie können jedoch Ionen in das Wasser einbringen. Die Lagerung von Reinstwasser kann auch die Proliferation von Bakterien anregen. Aus diesen Gründen ist frisch aufbereitetes Reinstwasser vorzuziehen [2].

Zusammenfassung

Die Vorteile der UHPLC sind eindeutig: beschleunigte Analysenzeit, bessere Auflösung und höherer Durchsatz. Um diese Vorteile voll auszunutzen, müssen die Verfahren zur Vorbereitung der Proben und mobilen Phase jedoch einen höheren Standard erfüllen als für die HPLC. Durch Verwendung der am besten geeigneten Filtermaterialien und Probenvorbereitungstechnologien sowie der bestmöglichen Wasserqualität kann die höchste Effektivität bei der UHPLC erzielt werden.

Literatur

  1. Mabic S., Regnault C., Krol J. The misunderstood laboratory solvent: reagent water for HPLC. LCGC North America 23(1):74-82 (2005).
  2. Tarun M., Monferran C., Devaux C., Mabic S. Improving chromatographic performance by using freshly delivered ultrapure water in the mobile phase. LCGC „The Peak“, June, 7-14 (2009).
Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Schnellster Feuchtebestimmer am Markt für Feuchte-/Feststoffgehalt

Der Feuchtebestimmer SMART 6 analysiert den Feuchtegehalt jeder Probe in nur 2 min. Ob nass oder trocken, Feststoff, Pulver oder Suspension – egal! Alle Probenarten werden dank der Kombination Mikrowelle/Halogen schnell und präzise bis zur Gewichtskonstanz getrocknet. Dank der Temperaturkontrolle sind die Messwerte vergleichbar zu den Standardmethoden.

mehr...
Anzeige
Anzeige

Schnelle automatisierte Lösemittel Extraktion

Das EDGE Extraktionssystem ist ein sequentielles System für die schnelle automatisierte Lösemittel-Extraktion. Damit werden unterschiedliche Proben schnell in nur 5 min. extrahiert. Die Extraktionen im EDGE werden unter Druck und bei erhöhten Temperaturen durchgeführt, was zu einer starken Beschleunigung der Reaktionskinetik führt.

Zum Highlight der Woche...