Labo Online - Analytic, Labortechnik, Life Sciences
Home> Wirtschaft + Wissenschaft> Archiv>

Wissenschaftler der ETH Zürich zeigen, wie man mit Quantencomputern komplexe chemische Reaktionen modellieren kann

Beispiel Nitrogenase-ReaktionMit Quantencomputern ungelöste Fragen der Chemie aufklären

Nichts Geringeres als eine technologische Revolution erwarten Fachleute von Quantencomputern: Sie sollen bald schon Probleme lösen können, die wegen ihrer hohen Komplexität außerhalb der Reichweite klassischer Supercomputer liegen. Die Datenverschlüsselung und -entschlüsselung sowie die Lösung spezieller Probleme in der Physik, Quantenchemie und Materialforschung sind oft genannte Anwendungsgebiete.

sep
sep
sep
sep
Modell des aktiven Zentrums des Enzyms und eine für die Berechnung zentrale mathematische Formel.

Wenn es um konkrete Fragen geht, deren Beantwortung Quantencomputer voraussetzen, blieben Experten bisher jedoch meist vage. Forschende von der ETH Zürich und von Microsoft Research präsentieren nun in der Fachzeitschrift PNAS erstmals eine ganz konkrete Anwendung: die Berechnung einer komplexen chemischen Reaktion. Damit veranschaulichen die Wissenschaftler, dass von Quantencomputern tatsächlich wissenschaftlich relevante Beiträge zu erwarten sind.

Anhand von Simulationen zeigen die Forschenden um die ETH-Professoren Markus Reiher und Matthias Troyer, dass sich eine komplexe chemische Reaktion mithilfe eines Quantencomputers berechnen lässt. So ein Quantencomputer müsste von «moderater Größe» sein, wie Matthias Troyer sagt. Er ist Professor für Computational Physics an der ETH Zürich und derzeit für Microsoft tätig. Die von den Wissenschaftlern präsentierte Reaktion ausschließlich mit einem klassischen Supercomputer zu berechnen, wäre kaum möglich – insbesondere, wenn die Lösung ausreichend präzis sein soll.

Anzeige

Nitrogenase: eines der komplexesten Enzyme

Als Anschauungsbeispiel verwendeten die Forscher in ihrer Studie eine besonders komplexe Reaktion aus der Biochemie: Bestimmte Mikroorganismen können dank eines speziellen Enzyms, einer Nitrogenase, die in der Luft vorkommenden Stickstoffmoleküle spalten und daraus chemische Verbindungen mit nur einem Stickstoff-Atom herstellen. Wie genau die Nitrogenase-Reaktion abläuft, ist jedoch unbekannt. «Es ist dies eine der großen ungelösten Fragen der Chemie», sagt Markus Reiher, Professor für Theoretische Chemie an der ETH Zürich.

Mit heutigen Computern lässt sich das Verhalten einfacher Moleküle recht genau berechnen. Für die Nitrogenase beziehungsweise deren aktives Zentrum sei dies jedoch praktisch nicht möglich, da das Molekül zu komplex sei, erklärt Reiher.

Komplexität heißt in diesem Fall, wie viele Elektronen innerhalb des Moleküls über verhältnismäßig lange Strecken miteinander wechselwirken. Je mehr Elektronen die Wissenschaftler berücksichtigen müssen, desto umfangreicher werden die Berechnungen. «Mit bestehenden Methoden und klassischen Supercomputern kann man Moleküle bis höchstens rund 50 stark wechselwirkenden Elektronen berechnen», so Reiher. Beim aktiven Zentrum der Nitrogenase müsse man jedoch deutlich mehr solcher Elektronen berücksichtigen. Weil sich auf einem klassischen Computer der Aufwand für jedes zusätzliche Elektron verdoppelt, bräuchte es dafür unrealistisch hohe Rechenkapazitäten.

Andere Computer-Architektur für besondere Aufgaben

Wie die ETH-Forschenden nun zeigten, werden hypothetische Quantencomputer mit nur 100 bis 200 Quanten-Bits (Qubits) komplexe Teilprobleme innerhalb von einigen Tagen berechnen können, dank derer der Reaktionsmechanismus der Nitrogenase schrittweise bestimmt werden könnte.

Dass Quantencomputer solche herausfordernden Aufgaben überhaupt lösen können, liegt unter anderem daran, dass sie grundsätzlich anders aufgebaut sind als klassische Computer. Quantencomputer benötigen pro zusätzlich zu berechnendes Elektron nicht doppelt so viele Bits, sondern einfach ein zusätzliches Qubit.

Wann es solche «moderat großen» Quantencomputer geben wird, ist allerdings ungewiss. Derzeitige experimentelle Quantencomputer besitzen erst um die 20 rudimentäre Qubits. Bis zu einem Quantencomputer, bei dem mehr als hundert qualitativ hochstehende Qubits für Rechenoperationen zur Verfügung stehen, wird es noch mindestens fünf, vermutlich jedoch eher zehn Jahre dauern, schätzt Reiher.


In Massen und miteinander vernetzt

Weil Quantencomputer nicht alle Aufgaben lösen können, werden sie klassische Computer dereinst nicht verdrängen, sondern ergänzen, wie die Forscher betonen. «Die Zukunft wird geprägt sein von einem Zusammenspiel von klassischen Computern und Quantencomputern», sagt Matthias Troyer.

Im Fall der Nitrogenase-Reaktion wird es so sein, dass Quantencomputer berechnen, wie die Elektronen in einer bestimmen Molekülstruktur verteilt sind. Welche Strukturen besonders interessant sind und daher berechnet werden sollen, wird hingegen weiterhin ein klassischer Computer dem Quantencomputer mitteilen müssen. «Den Quantencomputer muss man sich eher wie einen Co-Prozessor vorstellen, der einem klassischen Computer bestimmte Aufgaben abnehmen und ihn so beschleunigen kann», sagt Markus Reiher.

Um den Mechanismus der Nitrogenase-Reaktion aufzuklären, reicht es außerdem nicht, die Elektronenverteilung in einer einzigen Molekülstruktur zu bestimmen. Vielmehr muss diese Verteilung in tausenden von Strukturen bestimmt werden. Jede Berechnung dauert mehrere Tage. «Damit Quantencomputer für diese Art von Problemen von Nutzen sind, müssen sie dereinst in Massen zur Verfügung stehen. So können die Berechnungen auf mehreren Rechnern gleichzeitig laufen», sagt Troyer.

Literaturhinweis:
Reiher M, Wiebe N, Svore KM, Wecker D, Troyer M: Elucidating reaction mechanisms on quantum computers: PNAS 2017, 114: 7555-7560, doi: 10.1073/pnas.1619152114 [http://dx.doi.org/10.1073/pnas.1619152114]

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Schematische Darstellung von Quantenbits und ihren zwei Zuständen

QuantensimulatorKomplizierte Prozesse der Natur berechnen

Supraleitender Quantensimulator übertrifft die konventionellen Computer und könnte komplizierte biologische Prozesse wie den Pflanzenstoffwechsel abbilden.

…mehr
schwarze Diamanten

QuantenspeicherQuantenphysikalisch gekoppelte Diamanten

Atomare Fehler in Diamanten können als Quantenspeicher verwendet werden. An der TU Wien gelang es nun erstmals, Defekte unterschiedlicher Diamanten quantenphysikalisch zu koppeln. Diamanten mit winzigen Fehlern könnten für die Zukunft der Quantentechnologie eine große Rolle spielen. 

…mehr
Physiker der Universität Bonn

Auf dem Weg zum QuantencomputerSortiermaschine für Atome

Physiker der Universität Bonn haben eine wichtige Hürde auf dem Weg zum Quantencomputer genommen: In einer aktuellen Studie stellen sie eine Methode vor, mit der sie große Zahlen von Atomen sehr schnell und präzise sortieren können.

…mehr
Prof. Dr. Daniel Loss. (Bild: Universität Basel, Departement Physik)

König-Faisal-Preis 2017Basler Physiker ausgezeichnet

Prof. Daniel Loss vom Departement Physik der Universität Basel und vom Swiss Nanoscience Institute erhält den König-Faisal-Preis 2017 in der Sparte Wissenschaft.

…mehr
Die Abbildung illustriert das Herausfiltern unerwünschter Quasipartikel (rote Kugeln) aus einem Strom supraleitender Elektronenpaare (blaue Kugeln) mit Hilfe einer Pumpe mit Mikrowellen-Antrieb künstlerisch. (Quelle: Philip Krantz, Krantz NanoArt)

QuantencomputerSpeicherdauer von Qubits weiter verbessert

Einem internationalen Team von Wissenschaftlern ist es gelungen, die Speicherdauer von supraleitenden Quantenschaltern weiter zu verbessern. Dass die darin aufbewahrten Daten möglichst lange erhalten bleiben, ist eine wichtige Voraussetzung für die Realisierung leistungsfähiger Quantencomputer.

…mehr
Anzeige

Mediadaten 2018

LABO Marktübersichten

Produktkataloge bei LABO

Produktkataloge zum Blättern


Hier finden Sie aktuelle Blätter-Kataloge von Herstellern aus der Branche. Einfach durchblättern oder gezielt nach Stichwort suchen!

Anzeige

LABO Web-Guide 2016 als E-Paper

LABO Web-Guide 2016

Web-Guide 2016


- Stichwortregister

- Firmenscreenshots

-Interessante Webadressen aus dem Labor

Anzeige

Neue Stellenanzeigen

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

LABO bei Facebook und Twitter