Labo Online - Analytic, Labortechnik, Life Sciences
Home> Analytik> Spektroskopie>

Schutzmechanismus gegen lichtinduzierte Schädigungen

Röntgenfluoreszenz-SpektrometerPunktgenaue Elementanalyse mit Tischgerät

Röntgenfluoreszenz-Spektrometer: Punktgenaue Elementanalyse mit Tischgerät

Panalytical hat ein neues Röntgenfluoreszenz-Spektrometer für die Punktanalyse im Programm: das Epsilon 1.

…mehr

ProtonentransferMolekularer Schutzmechanismus gegen lichtinduzierte Schäden

Ein internationales Team aus Forschenden des Helmholtz-Zentrum Berlin (HZB) sowie aus Schweden und den USA hat einen Mechanismus untersucht, der Biomoleküle wie die Erbsubstanz DNA gegen Schädigung durch Licht schützt.

sep
sep
sep
sep
Protonentransfer

Sie beobachteten, wie die Energie der einfallenden Photonen im Molekül aufgenommen wird ohne wichtige Bindungen des Biomoleküls zu beschädigen. Die Experimente fanden am Freie Elektronen-Laser LCLS in Kalifornien und an der Synchrotronquelle BESSY II des HZB in Berlin statt, wo mit der Methode der resonanten inelastischen Röntgenstreuung, RIXS, ein sehr empfindliches Messverfahren bereit steht.

Biomoleküle wie die Erbsubstanz DNA benötigen Schutzmechanismen gegen energiereiches Licht. Denn UV-Anteile aus dem Sonnenlicht würden sonst rasch dazu führen, dass Bindungen brechen und Moleküle zerfallen. Der so genannte Protonentransfer spielt dabei eine wichtige Rolle. Mit ihm kann ein DNA-Molekül die über das Licht eingestrahlte Energie wieder abgeben – dabei löst sich ein einzelnes Proton – und andere chemische Bindungen bleiben erhalten.

Anzeige

Um den Prozess im Detail zu untersuchen, hat eine internationale Kooperation um Prof. Dr. Alexander Föhlisch, Institutsleiter am Helmholtz-Zentrum Berlin, in Kalifornien am LCLS-Laser des SLAC National Accelerator Laboratory und an der Berliner Synchrotronquelle BESSY II des HZB Experimente durchgeführt: Sie untersuchten ein verhältnismäßig einfaches Molekül, das 2-Thiopyridon (2-TP). Dieses Molekül hat ähnliche Eigenschaften wie die Bausteine der DNA und dient in der Bioforschung deshalb als Modellmolekül.

Die Forschergruppe regte zunächst gezielt das Stickstoff-Atom im Molekül mit sehr kurzen Röntgenpulsen im Femtosekundenbereich an. Die Ergebnisse, die nun im Fachblatt Angewandte Chemie publiziert sind, zeigen im Detail, wie sich nach der Anregung mit dem Lichtpuls das an das Stickstoff-Atom gebundene Proton ablöst.

„Erst einmal wollten wir diese Prozesse an einem einfachen Modellsystem untersuchen”, sagt Erstautor Sebastian Eckert, der bei Alexander Föhlisch an der Universität Potsdam und am Helmholtz-Zentrum Berlin seine Doktorarbeit schreibt. „Das Modellsystem 2-Thiopyridon ist geeignet, weil das Molekül klein genug ist, um es zu verstehen und nur ein einziges Stickstoff-Atom besitzt. Nur durch den Vergleich zwischen den FEL-Messungen und Experimenten am Synchrotron BESSY II ließ sich der Mechanismus eindeutig zuordnen." Dabei hatte das Team erstmals auch die Methode der so genannten inelastischen Röntgenstreuung, RIXS, an BESSY II angewandt, um molekulare Veränderungen um das Stickstoff-Atom herum zu beobachten, die mit dem raschen Protonentransfer zusammenhängen und extrem schnell, innerhalb von Femtosekunden, ablaufen.

Durch die Kombination der Experimente mit theoretischen Simulationen konnte letztlich der Reaktionspfad herausgearbeitet werden. Diese Berechnungen führte der Doktorand Jesper Norell und Prof. Dr. Michael Odelius der Universität Stockholm im Rahmen des Helmholtz Virtuellen Instituts „Dynamic Pathways in Multidimensional Landscapes“ durch.

Zur Publikation in Angewandte Chemie, International Edition, 2017, doi:10.1002/anie.201700239: "Ultrafast Independent N-H and N-C Bond Deformation Investigated with Resonant Inelastic X-ray Scattering" Sebastian Eckert;, Jesper Norell;, Piter S. Miedema, Martin Beye,Mattis Fondell, Wilson Quevedo, Brian Kennedy, Markus Hantschmann,Annette Pietzsch, Benjamin Van Kuiken, Matthew Ross,Michael P. Minitti, Stefan P. Moeller, William F. Schlotter, Munira Khalil, Michael Odelius, Alexander Föhlisch.

Zur Kooperation:
Die Kooperation besteht aus Wissenschaftlern der Universität Potsdam, des Helmholtz-Zentrum Berlin, der Universität Stockholm, der Universität Washington und LCLS (SLAC National Accelerator Laboratory, operated by Stanford University for the U.S. Department of Energy's Office of Science). Sebastian Eckert promoviert im Rahmen des ERC Advanced Grants EDAX von Prof. Dr. Alexander Föhlisch an der Universität Potsdam. Jesper Norell und Michael Odelius kollaborieren in Rahmen des Virtuellen Instituts VI419 „Dynamic Pathways in Multidimensional Landscapes“ der Helmholtz-Gemeinschaft.

Kontakt zum Experten:
Prof. Dr. Alexander Föhlisch
E-Mail: alexander.foehlisch@helmholtz-berlin.de

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Durch Einfluss von UV-Strahlung finden Nukleobasen, die Bausteine der DNA, manchmal den falschen Partner. Der Mechanismus dieses „Seitensprungs" konnte jetzt geklärt werden. (Copyright: Clemens Rauer, Universität Wien)

Sonnenlicht beeinflusst MoleküleEin folgenschwerer „Seitensprung"

Ein Team um Chemikerin Leticia González an der Universität Wien beschäftigt sich schon länger mit dem Effekt von Sonnenlicht auf unterschiedliche Moleküle. In einer neuen Studie konnten sie nun den Mechanismus aufklären, der häufig zu Schäden an der DNA führt, dem Träger unserer Erbinformation.

…mehr
Katharina Röttger

Der Sonnenschutz des ErbgutsWie sich DNA-Bausteine vor ihrer Zerstörung schützen

UV-Strahlung zählt zu den häufigsten Ursachen für Schäden an unserem Erbgut. Forscherinnen und Forscher der CAU und der Uni Bristol, haben nun erstmals beobachtet, was in DNA-Bausteinen passiert, wenn sie mit ultraviolettem Licht angeregt werden.

…mehr
LOGO GATC

BioanalytikGATC wird ein Teil der Eurofins Gruppe

Die GATC Biotech, Dienstleister für Sequenzierungen, wird ab Juli 2017 ein Teil der Eurofins Gruppe. Damit entsteht nach Angaben des Unternehmens eine führende Unternehmung im weltweiten Sequenziermarkt.

…mehr
Prof. Dr. Bernhard Spengler. (Foto: Dr. Jürgen H. Gross)

Fresenius-PreisProf. Dr. Bernhard Spengler erhält Medaille in Gold

Die erfreuliche Nachricht erreichte den Gießener Chemiker kurz vor Weihnachten: Prof. Dr. Bernhard Spengler vom Institut für Anorganische und Analytische Chemie der Justus-Liebig-Universität Gießen (JLU) erhält für seine hervorragenden wissenschaftlichen Leistungen von der Gesellschaft Deutscher Chemiker (GDCh) den Fresenius-Preis.

…mehr
Adenosinmonophosphat

Bildgebende MassenspektrometrieAnalyse von Stoffwechselprodukten aus fixiertem Gewebe

Wissenschaftler am Helmholtz Zentrum München haben eine neue Methode für die bildgebende Massenspektrometrie entwickelt, mit der es erstmals möglich ist, in fixierten Gewebeproben hunderte von Metaboliten gleichzeitig zu analysieren.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung