Labo Online - Analytic, Labortechnik, Life Sciences
Home> Life Sciences> Bioanalytik>

Hautkrebs - Sonnenlicht beeinflusst DNA

Sonnenlicht beeinflusst MoleküleEin folgenschwerer „Seitensprung"

Ein Team um Chemikerin Leticia González an der Universität Wien beschäftigt sich schon länger mit dem Effekt von Sonnenlicht auf unterschiedliche Moleküle. In einer neuen Studie konnten sie nun den Mechanismus aufklären, der häufig zu Schäden an der DNA führt, dem Träger unserer Erbinformation.

sep
sep
sep
sep
Durch Einfluss von UV-Strahlung finden Nukleobasen, die Bausteine der DNA, manchmal den falschen Partner. Der Mechanismus dieses „Seitensprungs" konnte jetzt geklärt werden. (Copyright: Clemens Rauer, Universität Wien)

Dieser Schaden entsteht, wenn die in der DNA enthaltenen Molekülbausteine UV-Strahlung ausgesetzt werden und in Folge den falschen Partner finden. Mittels Computersimulationen konnte das Team zeigen, was sich bei diesem „Seitensprung" auf molekularer Ebene abspielt. Die Ergebnisse dazu erscheinen aktuell im renommierten „Journal of the American Chemical Society".

Egal, ob man sich im Sommer an den Strand legt oder am Berg spazieren geht, wir sind ständig der Sonne und dem Licht ihrer Strahlen ausgesetzt. Die Sonnenstrahlen dringen in unseren Körper ein und verursachen dabei Schäden in unseren Zellen, die auch gravierende Auswirkungen auf die DNA haben können.

Falscher Partner kann zu Hautkrebs führen

Anzeige

DNA ist ein sehr komplexes Molekül, welches in Form einer Doppelhelix vorliegt. Hierbei sind zwei lange, sich umeinander windende Stränge miteinander verbunden. Diese Verbindungen bestehen jeweils aus zwei Nukleobasen, die sich im jeweiligen Strang gegenüberliegen und von der Natur als Partner vorgesehen sind.

„Durch den Einfluss von UV-Licht können Nukleobasen jedoch zur Partnersuche angeregt werden. Sie zappeln wild auf der Stelle und lassen dabei auch einmal von ihrem ursprünglichen Partner ab", erklärt Leticia González, theoretische Chemikerin an der Universität Wien. Anstatt mit der gegenüberliegenden Nukleobase verbinden sie sich dann mit einer benachbarten rechts oder links von ihr. Nach der Verknüpfung zum falschen Partner kann die in der DNA gespeicherte Information nicht mehr richtig abgelesen werden, was zu schwerwiegende Folgen, wie etwa Hautkrebs, führen kann.

Verhalten der Moleküle simuliert

Der genaue molekulare Mechanismus dieser Verbindungen war bisher unbekannt. „Mit den durchgeführten quantenmechanischen Rechnungen haben wir es geschafft, den Bildungsprozess dieser DNA-Schäden nachzuvollziehen", schildert Clemens Rauer, Erstautor der Studie und „uni:docs Fellow" am Institut für Theoretische Chemie. Da das Verhalten der Moleküle bei dem Sprung zur Seite so genau wie möglich beschrieben werden muss, hat das Team sehr zeit- und rechenintensive Simulationen durchgeführt, unter anderem am Supercomputer „Vienna Scientific Cluster". Die neu gewonnenen Informationen bilden nun den Grundstein für weitere Forschungen, um solche Schäden am Erbgut in Zukunft verhindern zu können.

Publikation:

„Cyclobutane Thymine Photodimerization Mechanism Revealed by Nonadiabatic Molecular Dynamics": Clemens Rauer, Juan J. Nogueira, Philipp Marquetand, Leticia González. In: Journal of the American Chemical Society, 2016. DOI:10.1021/jacs.6b06701.

Wissenschaftlicher Kontakt:

Univ.-Prof. Dr. Leticia González
Institut für Theoretische Chemie
Universität Wien
1090 Wien, Währinger Straße 17
E-Mail: leticia.gonzalez@univie.ac.at

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Katharina Röttger

Der Sonnenschutz des ErbgutsWie sich DNA-Bausteine vor ihrer Zerstörung schützen

UV-Strahlung zählt zu den häufigsten Ursachen für Schäden an unserem Erbgut. Forscherinnen und Forscher der CAU und der Uni Bristol, haben nun erstmals beobachtet, was in DNA-Bausteinen passiert, wenn sie mit ultraviolettem Licht angeregt werden.

…mehr
Illustration der Basenpaar-Stapelwechselwirkungen. (Bild: Christoph Hohmann & Hendrik Dietz/ Nano Initiative Munich/ TUM)

Kräftemessen im ErbgutmolekülForscher messen erstmals direkt die Stapelkraft in DNA-Doppelhelix

Unser Erbgut, die DNA, hat vereinfacht dargestellt die Struktur einer verdrehten Strickleiter – in der Fachwelt wird diese Struktur als Doppelhelix bezeichnet. Für ihre Stabilität sind unter anderem die sogenannten Basenpaar-Stapelwechselwirkungen verantwortlich.

…mehr
Uralte Knochen in Südosteuropa

Genomanalyse enthüllt UrgeschichteAls Jäger und Sammler auf Migranten trafen

Vor ca. 8 500 Jahren breitete sich die Landwirtschaft, begleitet von einer Völkerbewegung aus Anatolien vom Südosten ausgehend, nach Europa aus. Ein internationales Forschungsteam analysierte nun 225 Genomdaten von historischen Völkern, die vor oder nach diesem Wandel gelebt hatten.

…mehr
Genetische Barcodes: Falschen Superfoods auf der Spur

Genetische BarcodesFalschen Superfoods auf der Spur

Exotische Pflanzen als Energie- und Gesundheitsspender sind derzeit der „Renner“. Genetische Barcodes zeigen jetzt, ob es sich bei Produkten auch wirklich um das versprochene Original handelt.

 

…mehr

Chemische EvolutionWie entstand RNA auf der Erde?

Vor dem Leben kam die RNA: LMU-Forscher haben die ursprüngliche Entstehung dieser Erbgut-Bausteine aus simplen Molekülen simuliert; allein der Wechsel von Feuchtigkeit und Trockenheit auf der Ur-Erde könnte diesen Prozess angetrieben haben.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung