Neurowissenschaften

Was das Mäuseauge dem -gehirn erzählt

Tübinger Neurowissenschaftler zeigen, wie die Netzhaut Informationen ans Gehirn sendet: Bilder werden bereits im Auge ausführlicher interpretiert als bislang angenommen.

Die Netzhaut leitet über bis zu 40 verschiedene Kanäle Informationen an unser Gehirn weiter. (Abbildung: CIN / Universität Tübingen)

Bilder werden im Auge wesentlich umfassender verarbeitet und interpretiert als bisher bekannt. Tübinger Wissenschaftler haben in einer Studie die Kanäle untersucht, über die Informationen aus dem Auge ins Gehirn geleitet werden. Dabei identifizierten sie zahlreiche neue Zelltypen und stellten zudem fest, dass die Netzhaut über bis zu 40 verschiedene Kanäle ins Gehirn verfügen dürfte – doppelt so viele wie bislang angenommen. Die Ergebnisse wurden im Fachjournal „Nature“ veröffentlicht.

„Was das Froschauge dem Froschgehirn erzählt“ überschrieb 1959 der Kognitionswissenschaftler Jerome Lettvin einen bahnbrechenden Aufsatz. Seine Annahme: Das Gesehene wird nicht erst im Gehirn, sondern bereits im Auge verarbeitet. Lettvin konnte zeigen, dass das Auge nicht nur wie eine Kamera Bilder aufnimmt und ungefiltert ins Gehirn weiterleitet. Vielmehr werden bereits im Auge wichtige Informationen gewonnen, beispielsweise im Falle des Frosches: „Dort ist etwas Kleines, Dunkles, vielleicht eine Fliege“. Seine Thesen waren so revolutionär, dass Lettvin zunächst ausgelacht wurde. Mittlerweile aber gilt sein vielzitierter Aufsatz als Meilenstein, die damals gestellten Fragen beschäftigen die Wissenschaft noch heute.

Anzeige

So auch das Tübinger Forscherteam um Prof. Thomas Euler und Prof. Matthias Bethge vom Werner Reichardt Centrum für Integrative Neurowissenschaften der Universität Tübingen, dem Bernstein Center for Computational Neuroscience und dem Forschungsinstitut für Augenheilkunde des Universitätsklinikums Tübingen: Die Neurowissenschaftler wollten wissen, welche Informationen über die Welt die Retina (Netzhaut) vom Auge ins Gehirn sendet. Dazu untersuchten sie in einer großangelegten Studie über 11000 einzelne Netzhaut-Zellen in Mäusen. Die bisher größte Studie dieser Art hatte ca. 450 Zellen umfasst.

Durch eine Kombination modernster experimenteller Methoden untersuchten die Forscher sogenannte retinale Ganglienzellen (retinal ganglion cells, RGCs): Sie nutzten Elektroporation, eine Färbetechnik, durch die man ganze Populationen von Nervenzellen unter dem Mikroskop sichtbar machen und dann einzelnen Zellen in Echtzeit „bei der Arbeit“ zusehen kann. Dazu kamen neue Verfahren zur Analyse der großen Datenmengen.

Die Wissenschaftler interessierten sich dabei vor allem für die verschiedenen Funktionen der Zellen: Unterschiedliche Ganglienzellen reagieren auf unterschiedliche Eigenschaften der gesehenen Bilder und schicken diese Informationen über getrennte Kanäle ans Gehirn, die jeweils für Kontrast, Farbe, Bewegungsrichtung, die Lage von Kanten und ihrer Orientierung etc. zuständig sind. Aus diesen Informationskanälen baut das Gehirn dann unser Bild von der Welt. Die Wissenschaftler testeten Nervenzellreaktionen auf verschiedene einfache Bilder und bewegte optische Reize.

Das Forscherteam konnte anhand dieser funktionalen Unterscheidung bis zu 40 verschiedene Typen von Ganglienzellen in der Netzhaut zuordnen, die sehr wahrscheinlich ebenso viele Informationskanäle repräsentieren. Bislang war man von maximal 20 Typen ausgegangen. Die Ergebnisse aus dem Mausmodell lassen sich zwar nicht eins zu eins auf den Menschen übertragen – die Retina ist aber bei allen Säugetieren sehr ähnlich aufgebaut.

Die Vielzahl an Informationskanälen weist darauf hin, dass die Netzhaut die aufgenommenen Lichtsignale nicht nur in Nervenzellsignale umwandelt, sondern bereits wichtige Interpretationsarbeit leistet. Mit ihrer grundlegenden Arbeit sind die Tübinger Wissenschaftler dem Verständnis, wie die Interpretation von Bildern im Gehirn erfolgt, einen Schritt näher gekommen. Da viele Erkrankungen, die den Sehsinn einschränken, nur bestimmte Zelltypen in der Retina oder bestimmte Informationskanäle betreffen, können die Erkenntnisse auch dazu beitragen, gezielte Therapien zu entwickeln.

Auch die – gerade in Tübingen – seit einigen Jahren voranschreitende Forschung an prothetischer Implantattechnologie (Retina-Implantat), die eines Tages Blinde sehend machen könnte, kann derartige Beobachtungen nutzen. Bisherige Modelle stimulieren die Netzhaut relativ unspezifisch, mit Hilfe der neuen Erkenntnisse könnten künftige Versionen gezielt visuelle Informationen in die passenden Kanäle einspeisen.

Publikation:
Tom Baden, Philipp Berens, Katrin Franke, Miroslav Román Rosón, Matthias Bethge, Thomas Euler: „The Functional Diversity of Retinal Ganglion Cells in the Mouse.” Nature (im Druck). Januar 2016. DOI: 10.1038/nature16468.

Kontakt:
Prof. Thomas Euler
Universität Tübingen
Werner-Reichardt-Centrum für Integrative Neurowissenschaften (CIN)
E-Mail: thomas.euler@cin.uni-tuebingen.de
www.eye-tuebingen.de/eulerlab

Anzeige

Das könnte Sie auch interessieren

Anzeige

Nervenzellen sichtbar gemacht

Kartierung des Kleinhirns

Das menschliche Kleinhirn beherbergt auf 10 Prozent des Gehirnvolumens etwa 80 Prozent aller Nervenzellen – auf einen Kubikmillimeter können also über eine Million Nervenzellen entfallen. Ihre genauen Positionen und Nachbarschaftsbeziehungen sind...

mehr...

Zellbiologie

Wie wachsen Nervenzellen im All?

Wie entwickelt sich der erste im Weltall geborene Mensch? Was wie eine Frage aus einem Science-fiction-Roman klingt, ist Hintergrund eines aktuellen Forschungsprojekts der Universität Hohenheim in Stuttgart.

mehr...
Anzeige

Fliegende Brutschränke

Nervenzellen im All

Langsamere Reaktionen und verändertes Aufnahmevermögen von Medikamenten – in der Schwerelosigkeit funktionieren Nervenzellen nicht mehr wie gewohnt. Warum das so ist, untersuchen nun zwei Wissenschaftler der Universität Hohenheim – und schicken die...

mehr...

Newsletter bestellen

Immer auf dem Laufenden mit dem LABO Newsletter

Aktuelle Unternehmensnachrichten, Produktnews und Innovationen kostenfrei in Ihrer Mailbox.

AGB und Datenschutz gelesen und bestätigt.
Zur Startseite