Labo Online - Analytic, Labortechnik, Life Sciences
Home> Life Sciences> Zell- und Mikrobiologie>

Thetawellen koordinieren Orientierung und Bewegung im Gehirn

Thetawellen koordinieren Orientierung und BewegungGrüne Welle im Gehirn

Berliner Forschern ist es gelungen, mittels Lichtstrahlen die Thetawellen im Gehirn von Mäusen zu steuern. Sie konnten zeigen, dass die noch wenig verstandenen Gehirnwellen Botschaften zwischen unterschiedlichen Gehirnregionen übermitteln – als eine Art gemeinsame Sprache des Gehirns koordinieren sie mentale Zustände und Verhalten.

sep
sep
sep
sep
Thetawellen

Thetawellen wurden vor fast 80 Jahren in Berlin-Buch entdeckt und geben doch bis heute Rätsel auf: Warum feuern Nervenzellen in den Gehirnen von Mensch und Tier mitunter synchron, in einem schnellen Rhythmus von 5 bis 10 Schwingungen pro Sekunde? Thetawellen treten zum Beispiel im Navigationssystem des Gehirns, dem Hippocampus, auf. Bewegen sich Tiere oder Menschen fort, werden hier sogenannte „Ortszellen” aktiviert: Jede Position im Raum wird durch einige spezifische Ortszellen exakt kodiert. Ob die Thetawellen sich dabei auf Verhalten der Tiere während der Navigation auswirken, war bislang unbekannt.

Einem Forschungsteam am Leibniz-Institut für Molekulare Pharmakologie (FMP) und NeuroCure-Exzellenzcluster in Berlin, geleitet von Tatiana Korotkova und Alexey Ponomarenko, gelang es nun, den Thetarhythmus im Hippocampus von Mäusen mit Hilfe optogenetischer Methoden zu steuern. Dabei wurden die neuronalen Verbindungen, die vom Thetaschrittmacher des Gehirns zum Hippocampus führen, mit lichtempfindlichen Proteinen ausgestattet und dann über eine optische Faser angeregt. „Es war faszinierend zu beobachten, wie dieser prominente Gehirnmechanismus seinen Rhythmus den blauen Laserstrahlen anpasste”, erinnern sich die Doktorandinnen Franziska Bender und Maria Gorbati.

Anzeige

Durch Steuerung mittels Licht wurden die Thetawellen gleichförmiger und stabiler, da sie weniger von anderen Reizen beeinflusst wurden. Erstmals konnte man so die Bedeutung von Thetawellen für das Verhalten der Tiere erforschen. Die erste Überraschung: Während der Lichtstimulation liefen die Mäuse bei der Erkundung eines Areals langsamer und gleichmäßiger. „Man kann sich die Gehirnrhythmen als Ampeln vorstellen, die den Zellen mitteilen, wann sie an der Reihe sind“, fasst Alexey Ponomarenko die Ergebnisse zusammen. „Konstantere Oszillationen wirken wie präzise wiederkehrende Grünphasen auf die Zellen.”

Die zweite Überraschung: Nicht nur Areale der Großhirnrinde, sondern auch entwicklungsgeschichtlich weit ältere Hirnzentren reagierten auf die Grün- und Rotphasen der Hippocampusregion, und auch das wirkte sich auf das Verhalten der Mäuse aus. Die Thetawellen im Hippocampus werden über das Laterale Septum an den Hypothalamus weitergeleitet – eine grundlegende Schaltzentrale des Gehirns, die viele unbewusste Signale verarbeitet, was zu Empfindungen wie Hunger oder Bewegungsdrang führt.

„Über viele Jahre wurde die Bedeutung der Thetawellen für die Kodierung von Raum und Zeit studiert, um unser Verständnis davon zu erweitern, wie das Gehirn unsere täglichen Erfahrungen abspeichert”, erzählt Tatiana Korotkova. „Jetzt verstehen wir, dass das Bild unserer Umgebung, welches vom Hippocampus generiert wird, von anderen Gehirnregionen abgelesen wird, die direkten Einfluss auf die Bewegungsgeschwindigkeit während der Erkundung einer Umgebung nehmen können.”

Das Gehirn setzt sich aus Netzwerken zusammen, denen höchst unterschiedliche Organisationsmechanismen zugrunde liegen, und die womöglich unterschiedliche Sprachen sprechen, aber trotzdem zusammen funktionieren, um das Überleben des Organismus zu sichern. „Es war schon bekannt, dass Netzwerke im Gehirn mittels Synchronisation miteinander kommunizieren. Wir verfügten also über eine Art rudimentäres Wörterbuch, dass allerdings noch nie getestet worden war. Mit Optogenetik ist es nun möglich, an dieser Kommunikation teilzunehmen, die genaue Bedeutung des Synchronizations-Vokabulars zu bestimmen und das Wörterbuch erweitern“, erklärt Alexey Ponomarenko. Die Wissenschaftler sind überzeugt, dass die Manipulation mit optogenetischen Methoden dabei helfen kann, Ursache und Wirkung von Gehirndynamiken und Verhalten zu entschlüsseln und unser mechanistisches Verständnis psychischer Störungen zu vertiefen.

Quelle:
Franziska Bender, Maria Gorbati, Marta C. Cadavieco, Natalia Denisova, Xiaojie Gao, Constance Holman, Tatiana Korotkova & Alexey Ponomarenko: „Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway.” Nature Communications, 6:8521, DOI: 10.1038/ncomms9521, 2015.

Kontakt:
Dr. Tatiana Korotkova, Dr. Alexey Ponomarenko
AG Behavioural Neurodynamics
Leibniz-Institut für Molekulare Pharmakologie (FMP)/
NeuroCure Exzellenzcluster
Charité Campus Mitte
Dorotheenstrasse 94
10117 Berlin

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Lichtempfindliche IonenkanäleEin Lichtblitz als Lernhilfe

Spezielle Ionenkanäle machen es möglich: Nervenzellen können mit Licht gezielt an- und abgeschaltet werden. Wissenschaftler der Universität Würzburg haben jetzt diese Kanäle deutlich verbessert. Komplexe Verhaltensmuster lassen sich damit leichter untersuchen als bisher.

…mehr
Fadenwurm C. elegans exprimiert in seinen Körperwandmuskeln das Protein CyclOp (rot) zusammen mit einem cGMP-aktivierten Ionenkanal (grün)

OptogenetikLichtschalter aktiviert zellulären Botenstoff

Die Optogenetik ist ein noch junges Forschungsgebiet, das die neuro- und zellbiologische Forschungslandschaft weltweit revolutioniert hat. Sie verwendet natürliche oder maßgeschneiderte lichtempfindliche Proteine, um Nervenzellen mit bisher nicht gekannter Genauigkeit zeitlich und räumlich elektrodenfrei an- und abzuschalten.

…mehr
Gedächtnisprozesse

Gedächtnisprozessen auf der SpurMathematik beflügelt Hirnforschung

Das menschliche Gedächtnis besteht aus unterschiedlichen Vorgängen wie Lernen, Erinnern und Vergessen. Jedoch lassen sich diese Prozesse nicht direkt untersuchen.

…mehr
Neurologie: Axone: Enzym sorgt für dicke Isolation

NeurologieAxone: Enzym sorgt für dicke Isolation

Schwann-Zellen im peripheren Nervensystem stellen Fettsäuren zu einem großen Teil selbst her, um Nervenfasern elektrisch zu isolieren. Entscheidend daran beteiligt ist ein Enzym. Fehlt es, ist die Isolation mangelhaft, und die Motorik wird geschädigt.

…mehr
Strukturbiologie: Huntingtin-Struktur entschlüsselt

StrukturbiologieHuntingtin-Struktur entschlüsselt

Mutationen auf einem einzigen Gen, dem Huntingtin-Gen, sind die Ursache der Huntington-Krankheit. Jetzt haben Forscher mit Hilfe der Kryo-Elektronenmikroskopie die dreidimensionale Struktur des gesunden menschlichen Huntingtin-Proteins entschlüsselt. Ein verbessertes Verständnis von Struktur und Funktion des Proteins könnte in Zukunft zur Entwicklung neuer Behandlungsmöglichkeiten beitragen.

 

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung