Proteinfaltung

Wie das Chaperon Ssb mit dem Ribosom Kontakt aufnimmt

20 Jahre lang haben Forschende versucht herauszufinden, warum das Chaperon Ssb als einziges Mitglied der weit verbreiteten Hsp70-Chaperon-Familie direkt am Ribosom binden kann. An der Universität Konstanz wurde dieses Geheimnis nun gelüftet.

Von links: Prof. Dr. Elke Deuerling, Dr. Marie Anne Hanebuth, Sandra Fries, Dr. Alok Jain und Prof. Dr. Christine Peter. (Foto: Universität Konstanz)

Im Rahmen einer Zusammenarbeit der Arbeitsgruppen von Prof. Dr. Elke Deuerling und Prof. Dr. Christine Peter innerhalb des Sonderforschungsbereichs (SFB 969) „Chemical and Biological Principles of Cellular Proteostasis“ und der Graduiertenschule Chemische Biologie wurden zwei Stellen innerhalb des Ssb-Chaperons identifiziert, die einen direkten Kontakt zum Ribosom vermitteln und somit die Funktion von Ssb unterstützen.

„Wir können zeigen, dass Ssb vor allem über positiv geladene Aminosäuren mit dem Ribosom interagiert“, sagt Prof. Dr. Elke Deuerling, die SFB 969-Sprecherin, in deren Arbeitsbereich die Stellen entdeckt wurden. Die Ergebnisse werden in der Ausgabe des Wissenschaftsjournals Nature Communications vom 5. Dezember 2016 veröffentlicht.

Das Chaperon Ssb gehört zu der evolutionär hochkonservierten Hsp70-Chaperon-Familie, die in allen Lebewesen zu finden ist. Hsp70-Chaperone spielen eine zentrale Rolle bei der korrekten Proteinfaltung – der Erlangung der richtigen Struktur eines Proteins –, bei der Verhinderung von Proteinmissfaltung sowie beim Transport von Proteinen. Als einziges Mitglied dieser Familie hat Ssb direkten Kontakt mit dem Ribosom und ist schon sehr früh aktiv, wenn neue Proteine im Ribosom synthetisiert werden.

Anzeige

„Diese Fähigkeit ist einmalig und nicht auf den ersten Blick beim Vergleich mit anderen Hsp70-Chaperonen erkennbar. Nur wenige Aminosäuren verleihen Ssb diese zusätzliche Eigenschaft und zeigen, wie flexibel Hsp70-Chaperone sein können“, erklärt die Molekularbiologin Elke Deuerling, deren Mitarbeiterin Dr. Anne Hanebuth in ihrer Dissertation federführend zur Entdeckung der Ssb-Bindestellen beigetragen hat.

Bei verschiedenen Experimenten haben die Biologen herausgefunden, dass die Bindestellen von Ssb unter normalen (Labor-)Bedingungen nicht essentiell sind. Werden sie mutiert, ändert sich erst einmal nichts für die Hefezelle, in der sie vorkommen. Dies ist jedoch nicht mehr der Fall, wenn das Co-Chaperon RAC fehlt, ein ebenfalls Ribosomen-gebundener Komplex, der Ssb in seiner Funktion unterstützt. Ohne RAC kommt es in Anwesenheit der Ssb-Mutante zu Fehlern bei der Proteinfaltung, und ausgeprägte zelluläre Defekte treten auf. „Wir glauben, dass diese multivalenten Interaktionen mit den Bindestellen und RAC es dem Chaperon Ssb erlauben, sich optimal am Ribosom zu positionieren“, so Elke Deuerling. Diese richtige Position am Ribosom zu finden ist für die Wirksamkeit des Chaperons grundlegend wichtig.

Das Ribosomen-gebundene Chaperon Ssb gibt es, im Gegensatz zum Co-Chaperon RAC, nur in Pilzen wie der Hefe. Dort spielt es jedoch eine fundamentale Rolle. In höheren Zellen arbeitet RAC vermutlich mit anderen Hsp70-Chaperonen zusammen. Deshalb gehen die Forschenden davon aus, dass das RAC-Hsp70-Chaperon-System generell eine große Bedeutung dabei hat, Proteine richtig zu falten und die Zellen fit zu halten.

„Wie das RAC-Hsp70-System in höheren Zellen arbeitet und welche Auswirkungen es auf krankheitsrelevante Proteine hat, wird ein großes Thema im SFB sein“, stellt Elke Deuerling fest. Zu den Ergebnissen hinsichtlich des Ssb-Chaperons sagt sie: „Es war eine großartige Team-Arbeit innerhalb der Universität Konstanz und mit renommierten Gruppen aus Heidelberg und Stanford. Computersimulationen der molekularen Dynamik von Ssb gaben Hinweise auf wichtige molekulare Wechselwirkungen innerhalb des Ssb-Proteins. Dies führte zu Hypothesen über die Ribosom-Interaktion, die mit weiteren genetischen, biochemischen und kinetischen Ansätzen untersucht wurden. So kamen wir Stück für Stück zu unseren Ergebnissen.“

Originalveröffentlichung:

Marie A. Hanebuth, Roman Kityk, Sandra J. Fries, Alok Jain, Allison Kriel, Veronique Albanese, Tancred Frickey, Christine Peter, Matthias P. Mayer, Judith Frydman, Elke Deuerling: Multivalent contacts of the Hsp70 Ssb contribute to its architecture on ribosomes and nascent chain interaction. Nature Communications, 5. Dezember 2016. DOI: 10.1038/NCOMMS13695.

Anzeige

Das könnte Sie auch interessieren

Anzeige

Molekulare Chaperone

Helfer gegen Chorea Huntington

Chorea Huntington zählt zu den neurodegenerativen Erkrankungen und nimmt immer einen tödlichen Verlauf. Ursache ist ein Defekt im Huntingtin-Gen. Bis heute gibt es keine Therapie, die den schleichenden Zerfall der Gehirnzellen aufhalten könnte....

mehr...

Neue Proteinanalyse

Therapie und Diagnose von Krankheiten

Im Laufe des Alterns und durch verschiedene Krankheiten wie Diabetes oder Krebs verändern sich Proteine im Körper – zumeist durch ungewünschte Reaktionen mit verschiedenen Stoffwechselprodukten wie z.B. Methylglyoxal. Ein Team um Maria Matveenko und...

mehr...
Anzeige

Schnellster Feuchtebestimmer am Markt für Feuchte-/Feststoffgehalt

Der Feuchtebestimmer SMART 6 analysiert den Feuchtegehalt jeder Probe in nur 2 min. Ob nass oder trocken, Feststoff, Pulver oder Suspension – egal! Alle Probenarten werden dank der Kombination Mikrowelle/Halogen schnell und präzise bis zur Gewichtskonstanz getrocknet. Dank der Temperaturkontrolle sind die Messwerte vergleichbar zu den Standardmethoden.

mehr...
Anzeige
Anzeige

Schnelle automatisierte Lösemittel Extraktion

Das EDGE Extraktionssystem ist ein sequentielles System für die schnelle automatisierte Lösemittel-Extraktion. Damit werden unterschiedliche Proben schnell in nur 5 min. extrahiert. Die Extraktionen im EDGE werden unter Druck und bei erhöhten Temperaturen durchgeführt, was zu einer starken Beschleunigung der Reaktionskinetik führt.

Zum Highlight der Woche...