Labo Online - Analytic, Labortechnik, Life Sciences
Home> Life Sciences> Genomics/Proteomics>

ADHS und Autismus – genetische Ursache entdeckt

Ursache für HirnerkrankungNeuer genetischer Krankheitsmechanismus

„Timing ist alles“ bei der Signalübertragung zwischen Nervenzellen im Gehirn. Die allermeisten komplexen Leistungen, zu denen Menschen imstande sind, wären schwer beeinträchtigt, wenn ihre Nervenzellen nicht in der Lage wären, auf die tausendstel Sekunde genau miteinander zu kommunizieren.

sep
sep
sep
sep
Eine fluoreszierende Nervenzelle (grün) in einer Zellkultur. An den rosa gefärbten Synapsen kommuniziert die Zelle mit ihren Partnern. (© MPI f. experimentelle Medizin)

Zwischenmenschliche Kommunikation, Lernvorgänge, das Fokussieren unserer Aufmerksamkeit, die schnelle Verarbeitung von Sinnesreizen, ja selbst die korrekte Ausführung von Bewegungen wären nicht mehr möglich. Die israelische Wissenschaftlerin Noa Lipstein-Thoms vom Max-Planck-Institut für Experimentelle Medizin in Göttingen hat nun einen neuen genetischen Krankheitsmechanismus entdeckt, der die Stärke und zeitliche Präzision von Nervenzellsignalen beeinflusst und zu Störungen von Bewegungsabläufen, Aufmerksamkeitsdefizit-Hyperaktivitätsstörung (ADHS) und Autismus führt.

Lipstein-Thoms untersucht die grundlegenden Mechanismen der Signalübertragung zwischen Nervenzellen. Dieser Prozess findet an so genannten Synapsen statt, an denen eine sendende Nervenzelle auf einen elektrischen Reiz hin einen chemischen Botenstoff ausschüttet, der von der empfangenden Nervenzelle erkannt und wieder in ein elektrisches Signal umgewandelt wird. Dass dieser biologisch hoch komplexe Signalübertragungsprozess mit der nötigen Millisekunden-Präzision abläuft, wird von einer Reihe regulatorischer Proteine gewährleistet, die die Botenstoff-Ausschüttung an Synapsen kontrollieren, darunter auch ein Protein mit dem kryptischen Namen Munc13-1.

Anzeige

„Unsere genetischen Arbeiten an Mäusen haben gezeigt, dass Munc13-1 für die Signalübertragung an Synapsen unverzichtbar ist", erklärt Lipstein-Thoms. „Wenn es fehlt, ist das Gehirn nicht funktionsfähig, weil die Botenstoff-Ausschüttung an Synapsen blockiert ist. Die betroffene Maus stirbt." Selbst minimale Veränderungen am Munc13-1-Protein hätten oft katastrophale Konsequenzen, weil die zeitliche Präzision der synaptischen Signale verloren gehe.

Auf Grund dieser fundamentalen Bedeutung ist Munc13-1 bisher ausschließlich für die Grundlagenforscher unter den Neurowissenschaftlern interessant gewesen. „Krankheiten, die durch eine Fehlfunktion von Munc13-1 verursacht sein könnten, waren nicht bekannt", sagt Lipstein-Thoms. „Meine Kollegen und ich haben auch nicht damit gerechnet, dass das Protein bei einer Erkrankung eine Rolle spielen könnte, denn selbst kleine Störungen der Funktion von Munc13-1 haben solch schwer wiegende Konsequenzen. Wir haben lange Zeit vermutet, dass ein Defekt von Munc13-1 zwangsläufig zum Tod eines Organismus führt."

Munc13-1-Mutation Ursache psychischer Störungen

Diese Sichtweise hat sich durch eine neue Studie Lipstein-Thoms' dramatisch verändert. Zusammen mit dem Göttinger Neurobiologen Nils Brose und Psychiatern, Neurologen und Genetikern der Universität Utrecht in den Niederlanden beschreibt Lipstein-Thoms einen Patienten mit einem durch Mutation veränderten Munc13-1-Protein. Der Patient, der derzeit sieben Jahre alt ist und in Utrecht untersucht und behandelt wird, leidet unter einer untypischen Kombination von gestörten Bewegungsabläufen, ADHS und Autismus.

Lipstein-Thoms' niederländische Kollegen haben die Munc13-1-Mutation bei einer eingehenden genetischen Untersuchung des Patienten entdeckt. Sie gehen davon aus, dass diese Mutation aller Wahrscheinlichkeit nach für das besondere Krankheitsbild verantwortlich ist. „Das ist der erste Fall einer Munc13-1-Mutation, die an einer Erkrankung beteiligt ist. Aber meine Kollegen konnten nicht erklären, warum diese Mutation krank macht. Das ist aber die Voraussetzung dafür, dass sie eine Therapie entwickeln können."

Genveränderung lässt Synapsen schnell ermüden

„Hier kamen wir ins Spiel", sagt Nils Brose, der Lipstein-Thoms schon als Doktorandin betreut hat und seit zehn Jahren mit ihr zusammenarbeitet. „Wir haben hier am Max-Planck-Institut für experimentelle Medizin ein riesiges Repertoire an Methoden, Reagenzien und Tiermodellen entwickelt, um Munc13-Proteine und die mit ihnen verknüpften Synapsenfunktionen sehr genau zu analysieren. Dadurch wissen wir sehr viel über diese Proteine." Lipstein-Thoms konnte so nachweisen, dass die in dem Patienten entdeckte Munc13-1-Mutation zunächst zu einer unerwarteten Verstärkung der synaptischen Signalübertragung führt, die betroffenen Synapsen jedoch bei fortdauernder und besonders bei starker und hochfrequenter Aktivität viel schneller ermüden als normale Synapsen.

„Die Veränderungen der Übertragungseigenschaften an den Synapsen sind zwar eher klein, aber sie können das komplexe Krankheitsbild in dem betroffenen Patienten erklären", beschreibt Lipstein-Thoms den Stand ihrer Erkenntnisse. Synapsen sind bereits jetzt schon das Ziel vieler Medikamente im Bereich der Neurologie und Psychiatrie. „Wir wissen, welcher Prozess in den Synapsen des Patienten gestört ist, und könnten sogar versuchen, die von uns beschriebene Überfunktion der Synapsen mit bereits zugelassenen Medikamenten zu korrigieren", erklärt Lipstein-Thoms. „Das wäre dann ein wunderbares Beispiel dafür, dass Grundlagenforschung für die medizinische Anwendung essentiell ist."

Originalpublikation:

Lipstein, N., Verhoeven-Duif, N.M., Michelassi, F.E., Calloway, N., van Hasselt, P.M., Pienkowska, K., van Haaften, G., van Haelst, M.M., van Empelen, R., Cuppen, I., van Teeseling, H.C., Evelein, A.M.V., Vorstman, J.A., Thoms, S., Jahn, O., Duran, K.J., Monroe, G.R., Ryan, T.A., Taschenberger, H., Dittman, J.S., Rhee, J.-S., Visser, G., Jans, J.J. und Brose, N.: Synaptic UNC13A protein variant causes increased synaptic transmission and dyskinetic movement disorder. Journal of Clinical Investigation; 16 February, 2017.

Ansprechpartner:

Dr. Noa LipsteinMax-Planck-Institut für experimentelle Medizin, Göttingen
E-Mail: lipstein@em.mpg.de

Prof. Dr. Nils Brose
Max-Planck-Institut für experimentelle Medizin, Göttingen
E-Mail: brose@em.mpg.de

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Dendritenstruktur eines Flugmotorneurons

Entwicklung von NervensystemenSynapsen konkurrieren um neuronales Baumaterial

Während der Entwicklung neuronaler Schaltkreise müssen Nervenzellen über tausende von Synapsen korrekt miteinander verbunden werden. Synapsen verschalten zumeist auf spezialisierte Strukturen von Nervenzellen, die Dendriten.

…mehr
Dünnschnitt durch die Synapse eines Motorneurons des Fadenwurms Caenorhabditis elegans. Die synaptischen Vesikel (grün, rot) sind von der neuronalen Hüllmembran (orange) umgeben. Rote Vesikel sind fusionsfähig. Die blau markierten Vesikel enthalten Neuropeptide, mit denen die Zelle die Füllung der roten und grünen Vesikel kontrolliert. (Copyright: Szi-chieh Yu und Wagner Steuer Costa, Goethe Universität)

Zellen verändern Vesikel für BotenstoffeMolekulare „Gangschaltung“ für Nervensignale

Nervenzellen kommunizieren über Botenstoffe, die in kleinen Bläschen (Vesikeln) portionsweise verpackt sind. Sie schütten dazu den Inhalt dieser Vesikel in den synaptischen Spalt aus, der sie vom Nachbarn trennt.

…mehr
Das Bild zeigt  die stark lichtstreuende Struktur des Zebrafischgehirns. Das Fluoreszenzbild links macht deutlich, dass optische Mikroskopie hier an ihre Grenzen stößt und die Lichtbrechung keine einzelnen Signale zulässt. Das optoakustisch erzeugte Bild rechts ermöglicht hochaufgelöste und dreidimensionale Informationen zur Nervenaktivität (hier in Orange) in Echtzeit. (Quelle: Helmholtz Zentrum München)

Neuronalen BildgebungDem Gehirn bei der Arbeit zuschauen

Live dabei sein, wenn Nervenzellen im Gehirn miteinander kommunizieren, das ist der Traum vieler Neurowissenschaftler. Eine neue Methode erlaubt es nun, die Aktivierung von größeren Nervenverbänden auch im Präklinischen Modell und in Echtzeit dreidimensional zu beobachten.

…mehr
Neurologie: Axone: Enzym sorgt für dicke Isolation

NeurologieAxone: Enzym sorgt für dicke Isolation

Schwann-Zellen im peripheren Nervensystem stellen Fettsäuren zu einem großen Teil selbst her, um Nervenfasern elektrisch zu isolieren. Entscheidend daran beteiligt ist ein Enzym. Fehlt es, ist die Isolation mangelhaft, und die Motorik wird geschädigt.

…mehr
Strukturbiologie: Huntingtin-Struktur entschlüsselt

StrukturbiologieHuntingtin-Struktur entschlüsselt

Mutationen auf einem einzigen Gen, dem Huntingtin-Gen, sind die Ursache der Huntington-Krankheit. Jetzt haben Forscher mit Hilfe der Kryo-Elektronenmikroskopie die dreidimensionale Struktur des gesunden menschlichen Huntingtin-Proteins entschlüsselt. Ein verbessertes Verständnis von Struktur und Funktion des Proteins könnte in Zukunft zur Entwicklung neuer Behandlungsmöglichkeiten beitragen.

 

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung