Labo Online - Analytic, Labortechnik, Life Sciences
Home> Life Sciences> Genomics/Proteomics>

Schalterproteine - neue Einblicke in ihre Funktionsweise

ProteinforschungDer Computer als Mikroskop

Schalterproteine sind überall im Körper aktiv und häufig am Entstehen von Krankheiten beteiligt. Bochumer Forscher haben neue Einblicke in ihre Funktionsweise erlangt - dank einer besonderen Methode.

sep
sep
sep
sep
Das Forscherteam Carsten Kötting, Daniel Mann und Klaus Gerwert (von links) bereitet das Messgerät vor. Der Detektor des Spektrometers muss mit flüssigem Stickstoff gekühlt werden.  (© RUB, Marquard)

Mit einer Kombination aus Infrarotspektroskopie und Computersimulationen haben Forscher der Ruhr-Universität Bochum (RUB) neue Einblicke in die Funktionsweise von Schalterproteinen gewonnen. Dank hoher zeitlicher und räumlicher Auflösung belegten sie unter anderem den entscheidenden Beitrag eines Magnesiumatoms für das An- und Ausschalten der sogenannten G-Proteine.

G-Proteine sind zum Beispiel am Sehen, Riechen, Schmecken und an der Blutdruckregulation beteiligt. Sie sind Angriffspunkt für viele Medikamente. „Ein detailliertes Verständnis ihrer Funktionsweise ist daher nicht nur von akademischem Interesse", sagt Prof. Dr. Klaus Gerwert, Leiter des Lehrstuhls für Biophysik. Er berichtet die Ergebnisse gemeinsam mit seinen Bochumer Kollegen Privatdozent Dr. Carsten Kötting und Daniel Mann im Biophysical Journal. Die Zeitschrift widmete dem Thema in der Ausgabe vom 10. Januar 2017 die Titelgeschichte (<http://www.cell.com/biophysj/issue?pii=S0006-3495%2816%29X0003-3>).

Anzeige

G-Proteine als Krankheitsquelle

An alle G-Proteine kann das Molekül GTP binden. Spaltet ein Enzym eine Phosphatgruppe vom gebundenen GTP ab, wird das G-Protein ausgeschaltet. Diese sogenannte GTP-Hydrolyse läuft innerhalb von Sekunden im aktiven Zentrum der Enzyme ab. Funktioniert der Prozess nicht, kann das schwere Krankheiten auslösen, etwa Krebs, Cholera oder das seltene McCune-Albright-Syndrom, das sich zum Beispiel durch einen gestörten Knochenstoffwechsel auszeichnet.

Magnesium wichtig für Schaltmechanismus

Damit die GTP-Hydrolyse stattfinden kann, muss ein Magnesiumatom im aktiven Zentrum des Enzyms vorhanden sein. Das Forscherteam beobachtete erstmals direkt, wie das Magnesium Geometrie und Ladungsverteilung seiner Umgebung beeinflusst. Nach dem Ausschalten verbleibt das Atom in der Bindetasche des Enzyms. Bislang waren Forscher davon ausgegangen, dass das Magnesium die Tasche nach dem Schaltprozess verlässt.

Möglich machte die Erkenntnisse eine am RUB-Lehrstuhl für Biophysik entwickelte Methode. Sie erlaubt, enzymatische Prozesse mit hoher zeitlicher und räumlicher Auflösung in ihrem natürlichen Zustand zu verfolgen. Es handelt sich dabei um eine besondere Form der Spektroskopie, die zeitaufgelöste Fourier-Transform-Infrarot-Differenzspektroskopie. Allerdings geben die damit gemessenen Daten keine Auskunft darüber, an welcher Stelle des Enzyms ein Prozess gerade stattfindet. Diese Information gewinnen die Forscher durch quantenmechanische Computersimulationen von Strukturmodellen. „Erst mithilfe der Computersimulation können wir die in den Infrarotspektren versteckten Informationen decodieren", erklärt Carsten Kötting. So wird der Computer quasi zum Mikroskop.

Wie Proteine das Ausschalten beschleunigen

In der aktuellen Studie zeigten die RUB-Biophysiker auch, wie das spezialisierte Proteinumfeld dazu beiträgt, die GTP-Hydrolyse zu beschleunigen. Sie untersuchten die Rolle der Aminosäure Lysin, die in vielen G-Proteinen an der gleichen Stelle positioniert ist. Sie bindet genau die Phosphatgruppe des GTP-Moleküls, von der beim Ausschalten des G-Proteins ein Phosphat abgespalten wird.

„Lysin hat die Aufgabe, negative Ladungen von der dritten Phosphatgruppe auf die zweite Phosphatgruppe zu übertragen und damit die GTP-Hydrolyse zu beschleunigen", erklärt Daniel Mann. „Das ist ein weiterer wichtiger Ansatzpunkt, um langfristig Medikamente gegen Krebs und andere schwerwiegende Erbkrankheiten zu entwickeln."

Förderung

Die Deutsche Forschungsgemeinschaft förderte die Arbeiten im Rahmen des Sonderforschungsbereichs 642.

Originalveröffentlichung:

Daniel Mann, Udo Höweler, Carsten Kötting, Klaus Gerwert: Elucidation of Single Hydrogen Bonds in GTPases via Experimental and Theoretical Infrared Spectroscopy, in: Biophysical Journal, 2017, DOI: 10.1016/j.bpj.2016.11.3195.

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Sie bringen Licht ins Zusammenspiel der Proteine: Klaus Gerwert, Carsten Kötting und Daniel Mann (von links). (© RUB, Marquard)

ProteinforschungMolekulare Schalter im Detail erforscht

Sehen, Riechen, Schmecken, Blutdruckregulation - an allen diesen Prozessen sind molekulare Schalter beteiligt. Den Mechanismus, mit dem diese Proteine ausgeschaltet werden, hat ein Forscherteam der Ruhr-Universität Bochum (RUB) um Prof. Dr. Klaus Gerwert und Privatdozent Dr. Carsten Kötting untersucht.

…mehr
Prof. Franz Hagn Prof. Franz Hagn mit einer Kernspinresonanzspektroskopie-Probe am Supraleitenden Magneten mit 950 MHz Feldstärke. (Bild: Uli Benz / TUM)

G-ProteineSchaltmechanismus zeigt Wege zu neuen Medikamenten

G-Proteine sind molekulare Schalter an der Innenwand der Zelle, die wichtige Signale ins Zellinnere weiter leiten. Die mit ihnen verbundenen Rezeptoren sind Ziel eines Großteils aller Medikamente.

…mehr
Der Injektor injiziert winzige Proteinkristalle in den Röntgenpulsstrahl. Er benötigt pro Experiment nur wenige Milligramm der kostbaren Kristalle. Foto: Paul Scherrer Institut/Mahir Dzambegovic

Freie-Elektronen-RöntgenlaserProteine in Aktion erwischen

Proteine sind unverzichtbare Bausteine des Lebens. Sie spielen eine entscheidende Rolle bei zahlreichen biologischen Prozessen. Forschende konnten nun zeigen, wie man mit Freie-Elektronen-Röntgenlasern wie dem SwissFEL am Paul Scherrer Institut PSI die ultraschnellen Abläufe, mit denen Proteine ihre Arbeit machen, erforschen kann.

…mehr
Larven der schwarzen Soldatenfliege

Alternative in der Tierzucht?Insekten und Algen: Proteinquelle fürs Tierfutter

Wissenschaftler der Universität Göttingen erforschen zurzeit, ob und wie Soja durch Insekten- oder Algenmehle ersetzt werden kann. Erste Ergebnisse haben gezeigt, dass die Tiere das neue Futter gut annehmen und verwerten können.

…mehr
Logo des Innovationsforums Optogenetik

Lichtgesteuerte BiomoleküleOptik trifft Gentechnik: Innovationsnetzwerk Optogenetik gestartet

Welche Potenziale bietet der Bereich Optogenetik? Was sind die zukünftigen Geschäftsfelder und Absatzmärkte? Diese Fragen zu beantworten, hat sich das im Juni gestartete Innovationsnetzwerk Optogenetik zum Ziel gesetzt. 

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung