Aminosäuren

Warum genau diese zwanzig?

Mainzer Wissenschaftler haben mittels quantenchemischer Berechnungen eine Lösung für eine der ältesten Fragen der Biochemie gefunden: Erstmals können sie erklären, warum es heute 20 Aminosäuren gibt, aus denen alles Leben aufgebaut ist, obwohl die ersten im Lauf der Zeit entstandenen 13 Aminosäuren ausreichen, um ein umfassendes Repertoire an funktionalen Proteinen aufzubauen.

Die ersten 13 Aminosäuren sind durch sehr ähnliche chemische Härten und elektronische Energieniveaus (im Bild symbolisiert als einzelner Kreis) gekennzeichnet. Die neuen Aminosäuren wurden im Laufe der Evolution dann zunehmend weicher und unterschiedlicher, was sich in aufspaltenden Energieniveaus widerspiegelt (im Bild dargestellt als mehrere konzentrische Kreise). Bildquelle: Michael Plenikowski

Entscheidend, so die Forschenden um Dr. Matthias Granold und Univ.-Prof. Dr. Bernd Moosmann vom Institut für Pathobiochemie, sei die größere chemische Reaktivität der neueren Aminosäuren – weniger deren räumliche Struktur. In der Fachzeitschrift PNAS leiten sie darüber hinaus ab, dass der aufkommende Sauerstoff in der Atmosphäre diese Aufnahme weiterer Aminosäuren in den „Protein-Baukasten“ getriggert hat.

Alles Leben ist aus 20 Aminosäuren aufgebaut. Diese wiederum werden aus der Erbsubstanz DNA „abgelesen“: Dabei stehen jeweils drei aufeinanderfolgende DNA-Bausteine für eine Aminosäure. „Es war über Jahrzehnte rätselhaft, nach welchen Kriterien die 20 genetisch kodierten Aminosäuren von der Evolution ausgesucht worden sind“, beschreibt Univ.-Prof. Dr. Bernd Moosmann. „Besonders die letzten sieben Aminosäuren sind schwer erklärbar, da sich gute und funktionelle Proteine auch schon mit den ersten 10 bis 13 Aminosäuren zusammenbauen lassen.“

Die Forscher haben nun erstmals die Quantenchemie aller Aminosäuren, die das Leben benutzt, mit der Quantenchemie von Aminosäuren aus dem Weltall – gefunden in Meteoriten – sowie mit modernen Referenz-Biomolekülen verglichen. Dabei kam heraus, dass die neuen Aminosäuren systematisch „weicher“ (engl. „softer“) geworden sind. Chemisch „weich“ bedeutet dabei letztlich „leicht reaktiv“ oder chemisch leicht veränderbar. „Man könnte sagen, dass der Übergang von der toten Chemie des Weltalls zur modernen Biochemie in einer stetig steigenden Weichheit und damit Reaktivität der Bausteine bestand“, so Professor Moosmann. Für die Entwicklung der letzten Aminosäuren spielten also funktionelle Aspekte die entscheidende Rolle. Echte strukturelle Innovationen bieten die neuesten Bausteine hingegen kaum. In biochemischen Experimenten konnten die Forscher das Ergebnis ihrer theoretischen Rechnungen verifizieren.

Anzeige

Neue Aminosäuren als Folge des Luft-Sauerstoffs

Die sich anschließende Frage lautet: Warum kamen die „weichen“ Aminosäuren hinzu? Womit sollten die neuen, leicht reaktiven Aminosäuren denn reagieren? Aus ihren Ergebnissen folgern die Wissenschaftler, dass zumindest einige dieser neuen Aminosäuren, speziell Methionin, Tryptophan und Selenocystein, als Folge des aufkommenden Sauerstoffs in der Atmosphäre hinzugefügt wurden. Dieser Sauerstoff fördert die Bildung toxischer freier Radikale – in der Konsequenz sind moderne Organismen und Zellen massiv oxidativem Stress ausgesetzt. Die freien Radikale werden von den neueren Aminosäuren in sehr effizienter Weise gleichsam abgefangen – indem diese Aminosäuren chemische Reaktionen mit den freien Radikalen eingehen, die leicht reparierbar sind, und dadurch andere, wertvollere biologische Strukturen, die nicht reparierbar sind, vor der sauerstoff-induzierten Zerstörung schützen. Durch die neuen Aminosäuren ergab sich für die Urahnen aller heutigen Zellen somit ein echter Überlebensvorteil, der sie in der „neuen Welt“ bestehen ließ. „Man könnte den Sauerstoff daher auch als letzten Bildhauer des genetischen Codes verstehen“, veranschaulicht Professor Moosmann.

Originalpublikation
Matthias Granold, Parvana Hajieva, Monica Ioana Tosa, Florin-Dan Irimie, Bernd Moosmann, Modern diversification of the amino acid repertoire driven by oxygen, PNAS, January 2, 2018, vol. 115, no. 1, 41–46; Doi: http://www.pnas.org/cgi/doi/10.1073/pnas.1717100115.

 

Anzeige

Das könnte Sie auch interessieren

Anzeige

Mikrobiologie

Bakterielle Sporen mit „Gedächtnis“

Bakterielle Sporen speichern Informationen zur individuellen Wachstumsgeschichte ihrer Vorläuferzellen und verfügen somit über ein „Gedächtnis“, das die verschiedenen Phasen des Lebenszyklus von Bakterien miteinander verbindet. Dies hat ein...

mehr...

Chemische Evolution

Wie entstand RNA auf der Erde?

Vor dem Leben kam die RNA: LMU-Forscher haben die ursprüngliche Entstehung dieser Erbgut-Bausteine aus simplen Molekülen simuliert; allein der Wechsel von Feuchtigkeit und Trockenheit auf der Ur-Erde könnte diesen Prozess angetrieben haben.

mehr...
Anzeige

Evolution

Kein Gen ist eine Insel

Eine neue Studie von Calin Guet, Professor am Institut of Science and Technology Austria (IST Austria) und Magdalena Steinrück, PhD Studentin in Guets Gruppe, zeigt, dass die Nachbarschaft eines Gens mitentscheidend ist, ob und wie sich die...

mehr...