Graphen und Porphyrine

Wissenschaftler verkuppeln zwei Stars der Chemie-Welt

Graphen gilt unter Wissenschaftlern als Wundermaterial. Einem Forscherteam der TU München ist es nun gelungen, Graphen mit einer anderen chemisch bedeutsamen Gruppe, den Porphyrinen, zu verbinden. Porphyrine sind für ihre prägnanten funktionellen Eigenschaften bekannt, die beispielsweise bei der Photosynthese im Chlorophyll eine zentrale Rolle spielen. Die neuen Hybrid-Strukturen könnten in den Bereichen der molekularen Elektronik, Katalyse oder auch als Sensoren eingesetzt werden.

Scheme that illustrates the metallation of fused 2H-P with Ag adatoms to form Ag-P and the reversible binding of a CO molecule to Ag-P. (Bild: Yuanqin He/TUM)

Kaum ein Material steht in der Forschung derzeit so im Mittelpunkt wie Graphen. Es ist flexibel, äußerst dünn und durchsichtig – dabei weist es eine extreme Zugfestigkeit auf und leitet elektrischen Strom. Ideale Voraussetzungen für viele Anwendungsbereiche. Für die Gewinnung von Solarenergie oder den Einsatz als Gas-Sensor sind aber noch andere spezifische Eigenschaften nötig. Dafür können Moleküle, die diese Eigenschaften aufweisen, an die Kohlenstoff-Schicht "angehängt" werden.

In bisherigen Arbeiten hatten Wissenschaftler vor allem versucht, mit sogenannten nasschemischen Methoden die Moleküle auf die Oberfläche des Materials zu bringen. Auwärter und seine Kollegen wählten einen anderen Ansatz. Im Ultrahochvakuum konnten sie kontrolliert Porphyrin-Moleküle an das Material binden. Dabei nutzen sie die katalytischen Eigenschaften einer Silberoberfläche, auf der die Graphenlage aufliegt. Durch Erhitzen verlieren die Porphyrin-Moleküle an ihren Rändern Wasserstoffatome und können so neue Bindungen mit den Graphenkanten eingehen.

Kontrollierte Reaktion

"Die Methode bietet ein sauberes und kontrolliertes Umfeld", erklärt Wilhelm Auwärter, Professor für Molekulare Nanowissenschaften an Grenzflächen. "Wir können genau sehen, wie die Moleküle binden und welche Arten von Bindungen entstehen." Dazu verwenden die Forscher modernste Rasterkraftmikroskopie, die es erlaubt die chemische Struktur einzelner Moleküle – deren atomares  "Skelett" – direkt abzubilden.
 
Den Wissenschaftlern gelang es zum ersten Mal, funktionale Moleküle kovalent, also mit einer stabilen chemischen Bindung, an Graphenkanten anzubringen. "Es ist sinnvoll, nur die Kanten des Materials zu modifizieren, da so die positiven Eigenschaften des Graphens nicht zerstört werden", sagt Auwärter.

Spezifische Bindung von Gasmolekülen

Die Forscher wählten die Porphyrin-Moleküle wegen ihrer besonderen Eigenschaften. "Porphyrine sind beispielsweise verantwortlich für den Sauerstoff-Transport im Hämoglobin", erklärt Auwärter. Je nachdem, welche Metalle sich im Zentrum befinden, verändern die Moleküle ihre Eigenschaften und können unterschiedliche Aufgaben übernehmen, etwa die spezifische Bindung von Gasmolekülen wie Sauerstoff und Kohlendioxid.

Mithilfe der neuen Methode könnten in Zukunft auch andere Moleküle mit Graphen verknüpft werden. Außerdem wollen die Forscher die Reaktion noch besser kontrollieren und Moleküle an Kohlenstoff-Nanostrukturen wie Graphenbänder anhängen, um diese gezielt zu modifizieren. Diese Nanostrukturen haben eine zentrale Bedeutung für elektronische Anwendungen.

Publikation:

Anzeige
Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Integriertes Datenmanagement

Ihre im Labor erzeugten Daten können Sie sicher und strukturiert in einem System sammeln. NEC und labfolder bieten ein Mittel für die effiziente Verwaltung großer wissenschaftlicher Datensätze an.

mehr...
Anzeige
Anzeige
Anzeige

Highlight der Woche

Integriertes Datenmanagement
Die Herausforderung bei der Digitalisierung des Laboralltags besteht im Wechsel von Papierlaborbüchern und Computerdateien zu einer Datenmanagementsoftware, die große Datensätze strukturiert innerhalb eines einzigen Systems sammelt.

Zum Highlight der Woche...

Graphen

Extrem hohe Ströme möglich

Wieder einmal stellt sich heraus, dass Graphen ein ganz besonderes Material ist: Ein internationales Forschungsteam unter der Leitung von Prof. Fritz Aumayr vom Institut für Angewandte Physik der TU Wien konnte nun zeigen, dass die Elektronen in...

mehr...