Labo Online - Analytic, Labortechnik, Life Sciences
Home> Wirtschaft + Wissenschaft> Archiv>

Koordinationsverbindung mit außergewöhnlich langen Kohärenzzeiten

Molekulares Quantenbit mit langer KohärenzzeitLanglebige Qubits bei Zimmertemperatur

Von effizienteren Datenbankabfragen bis zum Knacken von heute noch sicheren Verschlüsselungscodes: Die Entwicklung eines konkurrenzfähigen Quantencomputers würde ein neues digitales Zeitalter einläuten.

sep
sep
sep
sep
Qubits

Bisher konzentriert sich die Forschung noch auf die Suche nach den Recheneinheiten, den sogenannten Quantenbits (kurz: Qubits). Diese kennen im Gegensatz zu normalen Bits nicht nur die Zustände 0 und 1, sondern auch beliebige Überlagerungen dieser beiden Zustände. Damit man mit Qubits sinnvoll rechnen kann, müssen diese Überlagerungszustände allerdings eine lange Kohärenzzeit aufweisen, das heißt, von ausreichender Dauer sein.

Die Arbeitsgruppe von Prof. Joris van Slageren vom Institut für Physikalische Chemie der Universität Stuttgart veröffentlichte nun in der Fachzeitschrift Nature Communications Ergebnisse zu einer Koordinationsverbindung mit außergewöhnlich langen Kohärenzzeiten, die zudem über einen sehr großen Temperaturbereich funktioniert [1].

Anzeige

Für die Implementierung eines Quantenbits wurden bisher verschiedene physikalische Systeme vorgeschlagen. Besonders vielversprechende Beispiele sind dabei Elektronenspins in magnetischen Molekülen. Koordinationsverbindungen, bestehend aus einem Metallion mit organischen Gruppen (Liganden), bieten über einfache chemische Manipulationen nahezu grenzenlosen Spielraum für maßgeschneiderte physikalische Eigenschaften. Bekannt ist durch die Forschungen bereits, dass die Lebensdauer des Überlagerungszustandes (Superposition) durch benachbarte Kernspins erheblich verkürzt wird, da diese ein Störfeld verursachen.

Aufbauend auf diesem Wissen haben die Stuttgarter Physikochemiker eine Verbindung identifiziert, die besonders wenige Kernspins in der direkten Umgebung des Elektronenspins aufweist und somit großes Potenzial für lange Kohärenzzeiten hat. Die Verbindung besteht aus einem zentralen Kupferion, eingebettet in einer organischen Hülle mit wenigen kernspintragenden Elementen. Die Ligandenhülle ist zudem sehr steif und flach und die Verbindung bildet im Festkörper besonders stabile, säulenförmige Stapel.

Die Stuttgarter Messungen zeigten, dass diese Design-Kriterien tatsächlich zu außergewöhnlich langen Kohärenzzeiten führen. Bei tiefen Temperaturen um 7 K konnte eine Lebensdauer von von 68 µs festgestellt werden. Dies übersteigt die bisherigen Werte molekularer Qubits, die im Bereich von wenigen Mikrosekunden lagen, um ein Vielfaches.

Zudem konnte die Kohärenz über einen außergewöhnlich breiten Temperaturbereich festgestellt werden: Während molekulare Qubits bis dato nur bei extremen Minusgraden Kohärenz zeigen, funktioniert das Stuttgarter Design auch bei Zimmertemperatur. Damit rückt die Realisierung von energieeffizienten Quantencomputern mit niedrigen Betriebskosten näher.

Die nächste Hürde auf dem Weg zu einer Anwendung in der Datenverarbeitung ist die strukturierte Abscheidung der Verbindung auf Oberflächen. Mit dieser Frage werden sich die Stuttgarter Forscher im nächsten Schritt befassen. "Für den Bau eines Quantencomputers gilt es nicht nur, Verbindungen mit langen Kohärenzzeiten zu finden, sondern diese auch selektiv ansprechen zu können", sagt die Diplom-Chemikerin Katharina Bader. Die Arbeit ist Teil ihrer vom Fonds der Chemischen Industrie geförderten Promotion. Die Messungen wurden in Kooperation mit der Universität Frankfurt durchgeführt und wurden finanziell von der Deutschen Forschungsgemeinschaft und dem Center for Integrated Quantum Science and Technology (Stuttgart/Ulm) unterstützt.

[1] Bader, K. et al. Room temperature quantum coherence in a potential molecular qubit. Nat. Commun. 5:5304, DOI: 10.1038/ncomms6304 (2014).

Weitere Informationen:
Prof. Joris van Slageren
Universität Stuttgart, Institut für Physikalische Chemie
E-Mail: slageren@ipc.uni-stuttgart.de.

Katharina Bader
Universität Stuttgart, Institut für Physikalische Chemie
E-Mail: k.bader@ipc.uni-stuttgart.de.

Andrea Mayer-Grenu
Universität Stuttgart, Abt. Hochschulkommunikation
E-Mail: andrea.mayer-grenu@hkom.uni-stuttgart.de.

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Quanten-Bits

QuantenkommunikationWie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

…mehr
Laserimpulse

Schnellere Steuerung eines QuantenbitsAuf der Quantenrennbahn

Angefangen bei Laptops bis hin zu Mobiltelefonen basiert der Fortschritt der entsprechenden Technologie auf der stetig wachsenden Geschwindigkeit, mit der die elektrische Ladung in Schaltkreisen gesteuert werden kann.

…mehr
Diamant

Auf dem Weg zum QuantencomputerKontrolle blitzschneller Quantenbits

Quantencomputer, die bestimmte Probleme im Vergleich zu heutigen Rechnern um ein Vielfaches effizienter lösen können, stecken technisch noch in den Kinderschuhen.

…mehr
Prof. Dr. Guido Burkard

Grundvoraussetzung für QuantencomputerQuantenbits kontrolliert und gesteuert

Prof. Dr. Guido Burkard, von der Uni Konstanz, entwickelte mit seinem Mitarbeiter Dr. Adrian Auer in der Theorie eine neue Methode, wie Spins von Quantenobjekten in einem Diamantkristall exakt gesteuert werden können.

…mehr
Mischkryostate

Projekt „QuantenMagnonics“KIT-Physiker erhält ERC Consolidator Grant der EU

Das Projekt „QuantenMagnonics“ von Dr. Martin Weides am Physikalischen Institut des KIT befasst sich mit den dynamischen Prozessen im Innersten von Ferromagneten wie Eisen oder Kobalt.

…mehr
Anzeige

Mediadaten 2018

LABO Einkaufsführer

Produktkataloge bei LABO

Produktkataloge zum Blättern


Hier finden Sie aktuelle Blätter-Kataloge von Herstellern aus der Branche. Einfach durchblättern oder gezielt nach Stichwort suchen!

Anzeige

LABO Web-Guide 2016 als E-Paper

LABO Web-Guide 2016

Web-Guide 2016


- Stichwortregister

- Firmenscreenshots

-Interessante Webadressen aus dem Labor

Anzeige

Neue Stellenanzeigen

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

LABO bei Facebook und Twitter