Labo Online - Analytic, Labortechnik, Life Sciences
Home> Wirtschaft + Wissenschaft> Archiv> Effektivere Wasserspaltung

Photokatalysator mit räumlich getrennten CokatalysatorenEffektivere Wasserspaltung

Photokatalysator mit räumlich getrennten Cokatalysatoren: Effektivere Wasserspaltung

Die photokatalytische Wasserspaltung nutzt Sonnenlicht, um Wasser in Wasserstoff und Sauerstoff zu spalten. Sie ist eine umweltfreundliche Methode zur Wasserstofferzeugung für Brennstoffzellen. Japanische Forscher stellen in der Zeitschrift Angewandte Chemie jetzt eine neue Methode vor, mit der sich effektivere Photokatalysatoren herstellen lassen. Es handelt sich dabei um winzige Hohlkugeln, die innen und außen mit verschiedenen Cokatalysatoren beschichtet sind.

sep
sep
sep
sep

Bei der photokatalytischen Wasserspaltung fängt der Katalysator, meist ein Halbleiter, Photonen ein. Elektronen werden angeregt und aus dem Valenzband ins Leitungsband gehoben. Im Valenzband hinterlassen die Elektronen Leerstellen, die als positiv geladene "Löcher" betrachtet werden. Schaffen es Elektronen und Löcher, zur Oberfläche des Katalysators zu wandern, bevor die entgegengesetzten Ladungen wieder rekombinieren, können sie auf Wassermoleküle übertragen und genutzt werden, um Wasser zu Wasserstoff zu reduzieren oder zu Sauerstoff zu oxidieren.

Anzeige

Immer wieder neue Katalysatorsysteme wurden untersucht und entwickelt, bisher war deren Effektivität jedoch noch nicht zufriedenstellend. Rein theoretisch sollten Katalysatoren auf der Basis von Tantalnitrid (Ta3N5) besonders geeignete Kandidaten für eine Photokatalyse mit sichtbarem Licht sein. Zwei Hauptprobleme haben den Erfolg in der Praxis bisher aber verhindert: Zum einen reagieren die entstehenden Produkte, Sauerstoff und Wasserstoff, auf der Oberfläche des Katalysators gleich wieder zurück zu Wasser. Zum anderen klappt es nicht recht mit der Ladungstrennung der bei der Reaktion entstehenden Elektronen und Löcher, die zu rasch wieder rekombinieren.

Cokatalysatoren sollen die Leistungsfähigkeit verbessern, indem sie Elektronen oder Löcher einfangen und auf das Wasser übertragen. Edelmetalle wie Platin können den Teilschritt der Reduktion zu Wasserstoff verbessern, Metalloxide wie Iridium- und Kobaltoxid die Oxidation zu Sauerstoff. Das Bestücken von Photokatalysatoren mit beiden Sorten von Cokatalysatoren brachte aber noch keinen durchschlagenden Erfolg.

Das Team um Kazunari Domen von der Universität Tokio hatte nun eine clevere Idee: Was, wenn die beiden Cokatalysatoren nicht gleichmäßig über den Katalysator verteilt wären, sondern räumlich getrennt? Um dies zu erreichen, entwickelten die Forscher eine einfache Methode zur Herstellung von Kern-Schale-Mikropartikeln. Zunächst beschichteten sie Siliciumdioxid-Mikrokügelchen mit Platin-Nanopartikeln und anschließend mit Tantaloxid, das sie im nächsten Schritt mit Ammoniak zu Tantalnitrid umsetzten und dann mit Iridium- oder Kobaltoxid umhüllten. Der Siliciumdioxid-Kern kann selektiv herausgelöst werden. Übrig bleiben hauchdünne poröse Hohlkugeln aus Tantalnitrid, die innen mit Platinnanopartikeln, außen mit Iridium- oder Kobaltoxid beschichtet sind. Dank dieses speziellen Aufbaus finden die beiden Teilreaktionen nicht mehr in unmittelbarer Nähe statt, wodurch sich die Ladungstrennung und damit die photokatalytische Aktivität deutlich verbessern.

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Modell der Nanomaschine

Nanomotoren für die Medizintechnik?Nanomaschine absolviert erfolgreich Probefahrt

Wissenschaftler von der Universität Bonn und vom Forschungszentrum caesar in Bonn haben mit Kollegen aus den USA aus Nanostrukturen eine winzige Maschine konstruiert, die sich auf einem Rad gezielt in eine bestimmte Richtung bewegen kann.

…mehr
Prof. Dr. Katharina Landfester (links), Direktorin am MPI-P, und Dr. Britta Unruhe-Knauf

Fachübergreifende ZusammenarbeitGemeinsam zum Erfolg in der Nanomedizin

Die Technologieinitiative RLP und das ZIM-Netzwerk haben Forscher, Mediziner und Unternehmer beim „NanoPharm“-Treffen in Mainz zusammengebracht. Das Ziel: Interdisziplinäres Verständnis und das Schmieden erfolgversprechender Projekte in der Nanomedizin.

…mehr
Reorganisation des Rezeptors nach Bindung eines Insulin-Moleküls

Nanodisc-TechnologieAufgeklärt: So funktioniert der Insulinrezeptor

Knapp 100 Jahre nach der Entdeckung des Insulins konnte ein deutsch-amerikanisches Forscherteam zeigen, wie genau das Hormon seinen Rezeptor aktiviert.

…mehr
Extraktion von Membranproteinen aus Biomembranen

Nanotechnologie für die...Polymer-Nanodiscs als neues Werkzeug für die Membranprotein-Extraktion

Die Struktur- und Funktionsaufklärung von Membranproteinen ist von herausragender Bedeutung für die pharmazeutische und biotechnologische Forschung.

…mehr
Ernährungswissenschaftler Dr. Thomas Schneider und Prof. Dr. Michael Glei

Winzig, nützlich – aber auch unbedenklich?Projektstart: Nachweis von Nanomaterialien in Lebensmitteln

Ernährungswissenschaftler der Uni Jena wollen zusammen mit Industriepartner Analytik Jena eine Analyseplattform für den Nachweis von potenziell gesundheitsschädlichen Nanomaterialien in Lebensmitteln entwickeln. EU und Land fördern das Projekt mit über 600 000 Euro. 

 

…mehr
Anzeige

Mediadaten 2018

LABO Einkaufsführer

Produktkataloge bei LABO

Produktkataloge zum Blättern


Hier finden Sie aktuelle Blätter-Kataloge von Herstellern aus der Branche. Einfach durchblättern oder gezielt nach Stichwort suchen!

Anzeige

LABO Web-Guide 2016 als E-Paper

LABO Web-Guide 2016

Web-Guide 2016


- Stichwortregister

- Firmenscreenshots

-Interessante Webadressen aus dem Labor

Anzeige

Neue Stellenanzeigen

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

LABO bei Facebook und Twitter