Chemische Evolution

Wie entstand RNA auf der Erde?

Vor dem Leben kam die RNA: LMU-Forscher haben die ursprüngliche Entstehung dieser Erbgut-Bausteine aus simplen Molekülen simuliert; allein der Wechsel von Feuchtigkeit und Trockenheit auf der Ur-Erde könnte diesen Prozess angetrieben haben.

Und die Erde war wüst und leer – bevor sich das Leben formte. Doch wie konnten vor etwa 4 Mrd. Jahren die ersten einfachen Bausteine entstehen, die die Entstehung des Lebens in Gang setzten? Unter welchen Bedingungen fügten sich solche Moleküle zusammen, aus denen sich komplexere informationstragende Einheiten bilden konnten, die sich selbst vervielfältigen – Vorläufer des heutigen Erbmaterials? Wissenschaftler um den Chemiker Professor Thomas Carell an der Ludwig-Maximilians-Universität München haben nun das Szenario für diese chemische Evolution erweitert, die der biologischen Stammesgeschichte vorausgegangen ist.

Danach reichen einfachste chemische Zutaten und Reaktionsbedingungen, wie sie auf der Erde vor Millionen von Jahren etwa auf geothermalen Feldern mit vulkanischer Aktivität im Untergrund zu finden gewesen sein dürften, um die Synthese sogenannter Nukleoside über eine ganze Reihe von Reaktionsschritten in Gang zu halten. Nukleoside sind wichtige Komponenten der Erbmoleküle RNA und DNA; Ausgangsstoffe dafür waren in den Versuchen, die die präbiotischen Bedingungen nachstellen sollten, Ameisen- und Essigsäure, Natriumnitrit und simple Stickstoff-Verbindungen. Auch brauchte es Metalle wie Nickel und Eisen, die in großen Mengen in der Erdkruste vorhanden sind. Angetrieben wurde die Kette der chemischen Reaktionen lediglich von Nass-Trocken-Zyklen, wie sie durch hydrothermale Quellen oder auch Dürre- bzw. Regenperioden entstehen können.

Anzeige

Entwicklung der RNA-Welt

Kernstück des Prozesses ist eine Reaktion zu sogenannten Formamidopyrimidinen, aus denen dann die Purine entstehen. Diesen FaPy-Pfad hatte Carells Team schon in einer früheren Arbeit beschrieben – als mögliches chemisches Szenario für die Entstehung von RNA-Bausteinen auf der Ur-Erde. „Diesmal haben wir nicht nur einfachere Ausgangsstoffe gewählt, sondern auch darauf geachtet, dass alles in einer plausiblen geologischen Umgebung, wie zum Beispiel hydrothermalen Quellen an Land, ablaufen kann“, sagt Sidney Becker, Doktorand in Carells Team und Erstautor der Arbeit im Open-Access-Ableger des renommierten Fachmagazins Nature.

In den neuen Experimenten entstanden jedoch nicht nur die kanonischen Nukleoside, sozusagen die klassischen Bausteine der RNA, sondern gleichzeitig ein ganzes Set von eng verwandten Molekülen. Diese so genannten RNA-Modifikationen sind essentiell für ein funktionierendes genetisches System und deshalb in allen Tieren, Pflanzen und Bakterien zu finden. Bereits deren letzter gemeinsamer Vorfahre nutzte diese fundamentalen RNA-Bausteine für diverse biologische Prozesse. Das spricht laut Becker zusätzlich dafür, dass sie bereits zu Beginn der biologischen Evolution auf der Ur-Erde existiert haben mussten. Bisher war jedoch fraglich, wie und in welcher Umgebung sie entstehen konnten. Sie könnten, so folgern die Wissenschaftler, die entscheidenden Moleküle gewesen sein, die die chemische Evolution getriggert und die RNA-Welt sich haben entwickeln lassen. Noch heute, nach 4 Mrd. Jahren, finden sich diese Strukturen als molekulare Fossilien in jedem Organismus, da sie eine Vielzahl an lebenswichtigen Funktionen übernommen haben und damit durch die Natur konserviert wurden.

Publikation
Sidney Becker, Christina Schneider, Hidenori Okamura, Antony Crisp, Tynchtyk Amatov, Milan Dejmek und Thomas Carell: Wet-dry cycles enable the parallel origin of canonical and non-canonical nucleosides by continuous synthesis. Nature Communications 2018.

Anzeige

Das könnte Sie auch interessieren

Anzeige

Gen-Editing

CRISPR-Cas9 kann auch RNA zerschneiden

Bakterien verfügen über ein Immunsystem namens CRISPR-Cas9, das fremde DNA eliminiert. Würzburger Forscher haben nun entdeckt, dass es auch RNA zerschneiden kann – ein Resultat mit potenziell weit reichenden Konsequenzen.

mehr...
Anzeige

Genregulation

In Form für den richtigen Schnitt

Bevor genetische Information in Proteine umgesetzt wird, entfernt eine komplexe molekulare Maschine – das Spleißosom – nicht benötigte Sequenzen. Dabei spielt dessen Struktur eine wichtige Rolle, wie LMU-Wissenschaftler zeigen.

mehr...