Ionenstrahlen-Experimente

Präzises Wissen für Krebstherapie und Strahlenschutz

Das genaue Verständnis der biologischen Wirkung von Ionenstrahlen ist von großer Bedeutung sowohl für Anwendungen in der Strahlentherapie als auch zur Risikoabschätzung im Strahlenschutz, etwa für Astronauten bei Langzeitmissionen im Weltall.

Im Fokus: die durch hochenergetische Ionenstrahlen erzeugte Schadensverteilung an biologischem Gewebe. (Bild: Thanh Nguyen)

Arbeitsgruppen der Strahlenbiologie um Prof. Markus Löbrich (TU Darmstadt) und der Biophysik um Prof. Marco Durante (GSI Helmholtzzentrum für Schwerionenforschung) haben erstmals experimentell mit hoher Auflösung die räumliche Schadensverteilung hochenergetischer Ionenstrahlen an biologischem Gewebe untersucht und diese mit theoretischen Modellvorhersagen verglichen.

Die biologische Wirkung von Strahlung beruht auf der Schädigung der Erbinformation (DNA), die im Zellkern jeder Zelle enthalten ist. Zellen besitzen allerdings leistungsstarke Reparaturmechanismen, mit denen ein großer Teil der strahleninduzierten Schädigungen wieder korrigiert werden kann.

Die höhere Wirkung von Ionenstrahlen im Vergleich zu konventionellen Photonenstrahlen (wie zum Beispiel Röntgenstrahlung) beruht darauf, dass sie ihre extrem hohe Energie auf sehr kleinem Raum rund um die Flugbahn der Ionen abgeben. Dadurch können Ionenstrahlen lokal sehr komplexe Schäden erzeugen, die sehr viel schlechter als Schäden nach Photonenbestrahlung repariert werden können.

Johanna Mirsch und Prof. Markus Löbrich. (Bild: Thanh Nguyen)

Die bisherigen Vorstellungen über das von Ionenstrahlen erzeugte räumliche Schadensmuster beruhen vor allem auf theoretischen Überlegungen, denen physikalische Messungen an Gasen zugrunde liegen. Daten an biologischen Systemen lagen bisher nicht vor.

Anzeige

In einer gemeinsamen Forschungsarbeit haben Wissenschaftler der TU Darmstadt und des GSI Helmholtzzentrums in Darmstadt erstmals mit Submikrometer-Auflösung die räumliche Schadensverteilung an biologischem Gewebe untersucht und mit theoriegeleiteten Prognosen verglichen. Für die Bestrahlungsexperimente an den GSI-Beschleunigeranlagen wurden hochenergetische Ionenstrahlen verwendet, die charakteristisch für die kosmische Strahlung im Weltraum sind.

Nachweis mit Marker
Für die Analyse wurde ein Gewebe verwendet, das sich durch eine besonders hohe Zellkerndichte auszeichnet, die eine nahezu lückenlose Detektion von DNA-Schäden ermöglicht. Zum Nachweis der Schäden wurde ein Marker für den biologisch schwerwiegendsten Schaden, den DNA-Doppelstrangbruch verwendet, bei dem beide Stränge der DNA durchtrennt werden und so wichtige Erbinformation unwiderruflich verloren geht.

Mit diesem experimentellen Ansatz können die Spuren der von den Ionen erzeugten DNA-Schäden über viele Zellen hinweg sichtbar gemacht werden. Die Messungen zeigen deutlich die Konzentration der Schäden im Zentrum der Ionenspur sowie eine nach außen rapide abnehmende Schadenshäufigkeit.

Genauere Wirkungsprognosen
Zum einen bestätigen diese biologischen Befunde die auf physikalischen Messungen beruhenden Annahmen über die räumliche Schadensverteilung; zum anderen dienen sie dazu, unterschiedliche Berechnungsmodelle kritisch zu überprüfen und gewissermaßen zu eichen. Diese Informationen bilden einen wesentlichen Bestandteil eines Modells zur Vorhersage der Strahlenwirksamkeit, das von Physikern des GSI Helmholtzzentrums entwickelt wurde und für die Bestrahlungsplanung der Tumortherapie an den Ionenstrahl-Therapiezentren in Heidelberg, Marburg, Pavia und Shanghai eingesetzt wird.

Weitere Informationen
Alle Details sind in der entsprechenden Veröffentlichung mit dem Titel “Direct Measurement of the 3-Dimensional DNA Lesion Distribution Induced by Energetic Charged Particles in a Mouse Model Tissue” von Johanna Mirsch, Francesco Tommasino, Antonia Frohns, Sandro Conrad, Marco Durante, Michael Scholz, Thomas Friedrich und Markus Löbrich im Journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) nachzulesen.

Anzeige
Jetzt Newsletter abonnieren

Das könnte Sie auch interessieren

Anzeige
Anzeige
Anzeige
Anzeige

Forschungsförderung

Leibniz-Preise 2023

Die Preisträgerinnen und Preisträger der Gottfried Wilhelm Leibniz-Preise 2023 stehen fest: Vier Wissenschaftlerinnen und sechs Wissenschaftler erhalten den bedeutenden Forschungsförderpreis.

mehr...
Anzeige
Anzeige
Anzeige

Bioinformatik

Wie KI ihre Entscheidungen erklären kann

Künstliche Intelligenz (KI) kann so trainiert werden, dass sie erkennt, ob ein Gewebebild Tumor enthält. Wie sie ihre Entscheidung trifft, bleibt bislang jedoch verborgen. Ein Forschungsteam der Ruhr-Universität Bochum entwickelt einen neuen Ansatz,...

mehr...