Labo Online - Analytic, Labortechnik, Life Sciences
Home> Analytik> Materialprüfung>

Photovoltaik - Solarzellen zum Ausrollen

3D-LaserlithographieLöschbare Tinte für den 3D-Druck

Lasergeschriebene dreidimensionale Mikrostrukturen lassen sich nun schreiben, auflösen und neu schreiben. (Bild: KIT)

Im 3D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. 

…mehr

Deutsch-dänisches PhotovoltaikprojektSolarzellen zum Ausrollen

Solarzellen, dünn wie Folie und so biegsam, dass sie sich auf unterschiedlichen Oberflächen wie Haus- und Fahrzeugdächer oder Glasfronten großflächig ausrollen lassen – das ist eines der langfristigen Ziele eines deutsch-dänischen Forschungsprojekts, das jetzt startet.

sep
sep
sep
sep
flexible Solarzellen

Beteiligt sind an dem Projekt „RollFlex-Innovationsprojektcenter“ neben der dänischen Syddansk Universitet (SDU), an der das Projekt angesiedelt ist, die Christian-Albrechts-Universität zu Kiel (CAU), die Kieler CAU-Ausgründung FUMT R&D Functional Materials GmbH, die dänische Firma Stensborg A/S sowie zahlreiche deutsche und dänische Netzwerkpartner. Am 14. Dezember fand in Sonderborg das offizielle Kick-Off-Treffen statt.

Die Entwicklung von organischen Energietechnologien wird bereits seit einigen Jahren erforscht, schließlich besitzen Solarzellen und LEDs aus organischen Materialien ein großes Potenzial im Hinblick auf Energieeffizienz und nachhaltige Energiegewinnung. Grund dafür sind ihre völlig neuen Eigenschaften im Vergleich zu herkömmlichen Siliciumzellen: mechanische Flexibilität, leichtes Gewicht, niedrige Kosten sowie Semitransparenz. Für die Zukunft werden dadurch innovative Anwendungen denkbar bis zu smarten Fenstern oder tragbaren Technologien in Kleidung.

Anzeige

Effiziente und günstige Solarzellen
Mit dem überregionalen Forschungsprojekt „RollFlex“ wollen deutsche und dänische Wissenschaftlerinnen und Wissenschaftler die Entwicklung von organischer Energietechnologie einen großen Schritt voranbringen. Dazu entsteht im dänischen Sonderborg mit dem Rollflex-Innovationsprojektcenter ein Labor, in dem Rolle-zu-Rolle-Druckanlagen erforscht und weiterentwickelt werden.

organische Leuchtdioden

Bei diesem Verfahren sollen Materialien großflächig auf dünne Substrate wie flexibles Glas oder Plastikfilme gedruckt werden. Am Ende sollen sie auch elektrische Bauteile enthalten wie flexible Elektronik, organische Leuchtdioden (OLEDS) und Solarzellen. Daraus könnten Produkte für Bereiche wie Beleuchtung, Displays oder Photovoltaik entwickelt werden. Im Reinraum der CAU erforschen die Kieler Wissenschaftlerinnen und -wissenschaftler Nano- und Mikrostrukturen, um damit die Effizienz der organischen Solarzellen und OLEDs zu steigern.

„Durch das Rollflex-Projekt können wir exzellente Kompetenzen aus der Region zum Rolle-zu-Rolle-Druck und zur Optimierung von organischen Bauteilen bündeln. Mit dem Aufbau eines starken Netzwerks zwischen Süddänemark und Norddeutschland hoffen wir, Energietechnologie langfristig deutlich effizienter zu machen. Unser Kieler Reinraumlabor leistet hier einen wichtigen Beitrag“, so Martina Gerken, Professorin am Institut für Elektrotechnik und Informationstechnik und Projektleiterin an der CAU.

Reinraum

Kieler erstellen Nano- und Mikrostrukturen im Reinraum
Die Kieler Projektpartner erforschen im Projekt zentrale Grundlagen der neuen Solartechnologie: Anhand von kleinen Bauteilen wollen sie zeigen, wie Mikro- und Nanostrukturen die Effizienz von flexiblen Solarzellen steigern können. Dazu erforschen Elektrotechnikerinnen und Elektrotechniker der CAU zunächst, wie die einzelnen Strukturen die Leuchtstärke von OLEDs beeinflussen. „Denn das Prinzip von OLEDs ähnelt, wenn auch genau gegensätzlich, dem, wie Solarzellen funktionieren“, erklärt Laborleiterin Dr. Sabrina Jahns „Die Erkenntnisse, die wir von den Zentimeter kleinen OLEDs und organischen Solarzellen erhalten, auf großflächig ausrollbare Bauteile zu übertragen, das ist die große Herausforderung für unser Forschungsprojekt.“

Durch die geringe Größe der Bauteile lässt sich vergleichsweise einfach mit einer Vielzahl von Varianten experimentieren. So wollen die Forschenden die optimale Konfiguration für die späteren Solarzellen identifizieren. In ihrem Optiklabor bestrahlen die Kieler Wissenschaftlerinnen und Wissenschaftler die OLEDs mit Lasern, um so die Wirkung der aufgetragenen Mikro- und Nanostrukturen zu untersuchen. Entwickelt werden die kleinen Solarzellen und OLEDs im Kieler Reinraumlabor, das ideale Bedingungen bietet, um die empfindlichen Prototypen ohne Verunreinigungen herzustellen.

Lasern

Die CAU-Wissenschaftlerinnen und -Wissenschaftler stehen in ihrer Arbeit in engem Austausch mit der FUMT R&D Functional Materials GmbH, einer Ausgründung der Kieler Uni zur Entwicklung von funktionalen Materialien. Dort werden für das Projekt vor allem spezielle Folien mit Nanopartikeln erstellt. Sie sollen die OLEDs und später auch die organischen Solarzellen vor Feuchtigkeit und Sauerstoff schützen.

„Diese Schutzschicht ist bei organischen Technologien besonders wichtig. Sie verhindert chemische Prozesse, die die Lebensdauer von Solarzellen und OLEDs beeinträchtigen“, erklärt Dr. Ala Cojocaru, Projektleiterin bei FUMT. „Wir haben bereits aus einem anderen Forschungsvorhaben Erfahrungen mit Folien, die wir in einem Rolle-zu-Rolle-Verfahren mit einer funktionalen Beschichtung versehen haben. Für uns ist es hochinteressant, wie sich unsere Materialien für die Energiegewinnung nutzen lassen”, ergänzt Geschäftsführer Hartmut Schmidt-Niepenberg.

Nanogitterstruktur

Eingebunden in Uni-Lehre und Region
Sowohl die CAU als auch die SDU integrieren das gemeinsame Forschungsprojekt in ihre Lehre. „Wir bieten unseren Studierenden damit eine exzellente Ausbildung, denn so arbeiten sie auf praxisnahe Weise an hochaktueller Forschung mit”, sagt Martina Gerken. Auch für zahlreiche Unternehmen in der Region Norddeutschland und Süddänemark, die bereits mit Rolle-zu-Rolle-Technologien arbeiten, ist der regionale Forschungszusammenschluss spannend. „Es wird seit vielen Jahren zu organischen Solarzellen geforscht, aber wir registrieren jetzt ein gesteigertes Interesse von Seiten der Industrie. Die Unternehmen sehen einen eigentlichen Durchbruch nahen, in dem die Solarzellen so stabil und effizient sind, dass sie kommerziell eingesetzt werden können. So sind z.B. mehr Unternehmen aus der Fahrzeugindustrie an der Technologie interessiert“, sagt Morten Madsen, Projektleiter SDU.

Das Innovationsprojektcenter RollFlex wird von 2016 bis 2019 durch das EU-Förderprogramm Interreg Deutschland-Danmark mit rund 1,6 Mio. Euro gefördert. Beteiligte Partnerinstitutionen sind neben der SDU, die CAU, FUMT R&D Functional Materials GmbH und Stensborg A/S. Hinzu kommen eine große Anzahl von Netzwerkpartnern in Norddeutschland und Dänemark, darunter IHK Flensburg, Norddeutsche Initiative Nanotechnologie Schleswig-Holstein e,V, (NINa SH) und die Wirtschaftsförderung und Technologietransfer in Schleswig-Holstein (WTSH).

Weitere Informationen sind erhältlich unter:
www.rollflex.eu
www.sebrochure.dk/Roll-Flex/WebView/

Kontakt:
Prof. Dr. Martina Gerken
CAU, Institut für Elektrotechnik und Informationstechnik
Integrierte System und Photonik
E-Mail: mge@tf.uni-kiel.de

Dr.-Ing. Sabrina Jahns
CAU, Institut für Elektrotechnik und Informationstechnik
Integrierte System und Photonik
E-Mail: sja@tf.uni-kiel.de

Hartmut Schmidt-Niepenberg
FUMT R&D, CEO
E-Mail: hsn@fumt-rd.de

Dr. Ala Cojocaru
FUMT R&D, Projektmanagement
E-Mail: ac@fumt-rd.de

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Plastiksolarzellen

PlastiksolarzellenRöntgenblick zeigt Verschleiß

Mit dem scharfen Röntgenblick von DESYs Forschungslichtquelle PETRA III haben Wissenschaftler der Technischen Universität München den Verschleiß von Plastiksolarzellen beobachtet. Die Untersuchung liefert einen Ansatz für eine verbesserte Herstellung.

…mehr

Jenseits der herkömmlichen LichtausbeuteWissenschaftler entwickeln organische Solarzellen als Alternative zu herkömmlichen Siliziumzellen

Einen wichtigen Schritt in Richtung noch effizientere Solarzellen haben Wissenschaftler der Universität Erlangen-Nürnberg unternommen. Den Forschern gelang es, den sogenannten Füllfaktor, der die Effizienz  einer Solarzelle beschreibt, auf 77 Prozent zu erhöhen und damit die Lichtausbeute zu steigern.

…mehr

Gedruckte Photovoltaik-TechnologieEffiziente und nachhaltige organische Solarzellen

Im Rennen um effiziente Solartechnologien der Zukunft als tragfähige Alternative zu fossilen Energieträgern haben Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) rund um den renommierten Photovoltaik-Forscher und Materialwissenschaftler Prof. Dr. Christoph Brabec einen Meilenstein gesetzt.

…mehr
Spin-Dicke-Effekt in einer OLED

Ringelreihen in der OLEDWenn Elektronen Händchen halten

OLEDs haben die Displaytechnik revolutioniert und finden sich heute in vielen Smartphones. Ein internationales Forscherteam der Universitäten in Regensburg, Salt Lake City und Queensland konnte nun zeigen, welches Potential OLEDs auch im Bereich der wissenschaftlichen Grundlagenforschung besitzen.

…mehr
Power-to-Liquid: Synthetischer Kraftstoff aus Sonnenenergie und Luft-CO<sub>2</sub>

Power-to-LiquidSynthetischer Kraftstoff aus Sonnenenergie und Luft-CO2

Die ersten 200 Liter synthetischen Kraftstoff aus Sonnenenergie und dem Kohlenstoffdioxid der Luft über den Weg der Fischer-Tropsch-Synthese hat nun das Projekt Soletair hergestellt. An dem Projekt sind die Ausgründung des Karlsruher Instituts für Technologie Ineratec und finnische Partner beteiligt.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung