Lichtblattmikroskopie mit AutoPilot

Das selbstfahrende Mikroskop

Die Lichtblattmikroskopie ist eine relativ neue Methode, mit der die Entwicklung und Funktionsweise lebender Organismen abgebildet und erforscht werden kann. Um jedoch durchgehend gestochen scharfe Bilder zu erhalten, müssen diese Mikroskope im laufenden Betrieb immer wieder manuell nachjustiert werden.

Entwicklung des Nervensystems eines Fruchtfliegenembryos über 20 Stunden mit farbig hervorgehobenen Nervenzellen. AutoPilot erkennt den Marker automatisch und stellt alle Parameter des Mikroskops so ein, dass die beste Bildqualität erreicht wird. (© MPI f. molekulare Zellbiologie und Genetik)

Forscher des Max-Planck-Instituts für molekulare Zellbiologie und Genetik in Dresden haben mit Kollegen des Janelia Research Campus in den USA ein neuartiges Lichtblattmikroskop entwickelt, das die nötigen Anpassungen an die sehr dynamischen optischen Bedingungen in größeren lebenden Proben selbst steuert und automatisch anpasst. Dieses intelligente System mit dem Namen „AutoPilot“ vereint Hard- und Software und kann Bilder automatisch auswerten und die Einstellungen des Mikroskops dazu selbst optimieren. Das „AutoPilot“-System verbessert die Bildqualität um das Fünffache. Dadurch können Wissenschaftler beispielsweise erstmals die gesamte Entwicklung von ganzen Embryonen in gestochen scharfen Bildern sichtbar machen.

Für verlässliche wissenschaftliche Erkenntnisse zum Ablauf der embryonalen Entwicklung von Lebewesen müssen Forscher davon Bilder in möglichst guter Qualität aufnehmen. Bei der Lichtblattmikroskopie strahlt ein Laser senkrecht zur Beobachtungsrichtung auf die zu untersuchende Probe. Der Laserstrahl wird durch eine Linse nur in einer Richtung gebündelt. So entsteht im Fokus eine Lichtscheibe, die nur eine dünne Schicht innerhalb der Probe ausleuchtet. Auf diese Weise regt der Laser nur Farbstoffmoleküle in der Ebene an, die durch das Mikroskop beobachtet wird. Streulicht aus anderen Schichten, das die Bildqualität beeinträchtigt, wird so weitgehend vermieden.

Anzeige

Für die Lichtblattmikroskopie bedeutet das, dass die zwei verwendeten Ebenen – die Ebene, die die Probe durchleuchtet und die rechtwinklig dazu angeordnete Ebene, die das entstehende Bild erfasst – immer perfekt zueinander eingestellt sein müssen. Da große Proben viel Raum mit unterschiedlichsten Entfernungen zum Objektiv einnehmen und sich auch noch bewegen können, variieren die optischen Bedingungen extrem, was schnell zu Problemen mit der Bildqualität führen kann.

“Bisher waren Forscher gleichsam am Mikroskop gefangen und mussten ständig manuell die Einstellungen nachjustieren – damit ist jetzt Schluss. Unser System ist wie ein selbstfahrendes Auto: Es trifft alle Entscheidungen selbst und lenkt das System ohne den Forscher”, erklärt Loïc Royer, der „AutoPilot“ maßgeblich entwickelt hat. Das intelligente Mikroskopsystem analysiert die gewonnenen Bilder in Echtzeit und optimiert eigenständig ununterbrochen die Anordnung der beiden Ebenen des Mikroskops.

Verschiedene Arbeitsgruppen haben das intelligente Mikroskopsystem im Alltag getestet und etwa die Entwicklung von ganzen Fruchtfliegenembryos und Zebrafischen über 20 Stunden unter dem Mikroskop beobachtet. Ein weiteres Team hat das gesamte Gehirn in Zebrafischlarven abgebildet und verschiedene Proteine speziell markiert – das alles mit gestochen scharfen Bildern, die ein arbeitendes Gehirn zeigen. „AutoPilot” hat dabei in vielen Fällen die Unschärfe bei räumlich weit verteilten fluoreszierenden Markern automatisch ausgeglichen und bereinigt. „Wir nutzen das System seit gut zwei Jahren an verschiedenen Mikroskopen und wir können bestätigen, dass die Bildqualität um Welten besser ist”, sagt Philipp Keller, der die Studien gemeinsam Gene Myers leitete.

Intelligente und selbstgesteuerte Lichtblattmikroskope dieser Art werden die Digitalisierung der Biologie entscheidend vorantreiben, den Einsatz der Lichtblattmikroskopie in Hochdurchsatz-Screens der Pharmaforschung ermöglichen und dabei helfen, digitale Atlanten von gängigen Modellorganismen zu erstellen.

Originalpublikation:
Loïc A Royer, William C Lemon, Raghav K Chhetri, Yinan Wan, Michael Coleman, Eugene Myers & Philipp J Keller: Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms. Nature Biotechnology; 31 October, 2016 (DOI: 10.1038/nbt.3708).

Ansprechpartner:
Dr. Loic Royer
Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden
E-Mail: royer@mpi-cbg.de

Katrin Boes
Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden
E-Mail: kboes@mpi-cbg.de

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Schnellster Feuchtebestimmer am Markt für Feuchte-/Feststoffgehalt

Der Feuchtebestimmer SMART 6 analysiert den Feuchtegehalt jeder Probe in nur 2 min. Ob nass oder trocken, Feststoff, Pulver oder Suspension – egal! Alle Probenarten werden dank der Kombination Mikrowelle/Halogen schnell und präzise bis zur Gewichtskonstanz getrocknet. Dank der Temperaturkontrolle sind die Messwerte vergleichbar zu den Standardmethoden.

mehr...
Anzeige
Anzeige

Schnelle automatisierte Lösemittel Extraktion

Das EDGE Extraktionssystem ist ein sequentielles System für die schnelle automatisierte Lösemittel-Extraktion. Damit werden unterschiedliche Proben schnell in nur 5 min. extrahiert. Die Extraktionen im EDGE werden unter Druck und bei erhöhten Temperaturen durchgeführt, was zu einer starken Beschleunigung der Reaktionskinetik führt.

Zum Highlight der Woche...

Newsletter bestellen

Immer auf dem Laufenden mit dem LABO Newsletter

Aktuelle Unternehmensnachrichten, Produktnews und Innovationen kostenfrei in Ihrer Mailbox.

AGB und Datenschutz gelesen und bestätigt.
Zur Startseite