Labo Online - Analytic, Labortechnik, Life Sciences
Home> Labortechnik> Mikroskopie>

Lichtblattmikroskopie mit AutoPilot - das selbstfahrende Mikroskop

Lichtblattmikroskopie mit AutoPilotDas selbstfahrende Mikroskop

Die Lichtblattmikroskopie ist eine relativ neue Methode, mit der die Entwicklung und Funktionsweise lebender Organismen abgebildet und erforscht werden kann. Um jedoch durchgehend gestochen scharfe Bilder zu erhalten, müssen diese Mikroskope im laufenden Betrieb immer wieder manuell nachjustiert werden.

sep
sep
sep
sep
Fruchtfliegenembryo

Forscher des Max-Planck-Instituts für molekulare Zellbiologie und Genetik in Dresden haben mit Kollegen des Janelia Research Campus in den USA ein neuartiges Lichtblattmikroskop entwickelt, das die nötigen Anpassungen an die sehr dynamischen optischen Bedingungen in größeren lebenden Proben selbst steuert und automatisch anpasst. Dieses intelligente System mit dem Namen „AutoPilot“ vereint Hard- und Software und kann Bilder automatisch auswerten und die Einstellungen des Mikroskops dazu selbst optimieren. Das „AutoPilot“-System verbessert die Bildqualität um das Fünffache. Dadurch können Wissenschaftler beispielsweise erstmals die gesamte Entwicklung von ganzen Embryonen in gestochen scharfen Bildern sichtbar machen.

Anzeige

Für verlässliche wissenschaftliche Erkenntnisse zum Ablauf der embryonalen Entwicklung von Lebewesen müssen Forscher davon Bilder in möglichst guter Qualität aufnehmen. Bei der Lichtblattmikroskopie strahlt ein Laser senkrecht zur Beobachtungsrichtung auf die zu untersuchende Probe. Der Laserstrahl wird durch eine Linse nur in einer Richtung gebündelt. So entsteht im Fokus eine Lichtscheibe, die nur eine dünne Schicht innerhalb der Probe ausleuchtet. Auf diese Weise regt der Laser nur Farbstoffmoleküle in der Ebene an, die durch das Mikroskop beobachtet wird. Streulicht aus anderen Schichten, das die Bildqualität beeinträchtigt, wird so weitgehend vermieden.

Für die Lichtblattmikroskopie bedeutet das, dass die zwei verwendeten Ebenen – die Ebene, die die Probe durchleuchtet und die rechtwinklig dazu angeordnete Ebene, die das entstehende Bild erfasst – immer perfekt zueinander eingestellt sein müssen. Da große Proben viel Raum mit unterschiedlichsten Entfernungen zum Objektiv einnehmen und sich auch noch bewegen können, variieren die optischen Bedingungen extrem, was schnell zu Problemen mit der Bildqualität führen kann.

“Bisher waren Forscher gleichsam am Mikroskop gefangen und mussten ständig manuell die Einstellungen nachjustieren – damit ist jetzt Schluss. Unser System ist wie ein selbstfahrendes Auto: Es trifft alle Entscheidungen selbst und lenkt das System ohne den Forscher”, erklärt Loïc Royer, der „AutoPilot“ maßgeblich entwickelt hat. Das intelligente Mikroskopsystem analysiert die gewonnenen Bilder in Echtzeit und optimiert eigenständig ununterbrochen die Anordnung der beiden Ebenen des Mikroskops.

Verschiedene Arbeitsgruppen haben das intelligente Mikroskopsystem im Alltag getestet und etwa die Entwicklung von ganzen Fruchtfliegenembryos und Zebrafischen über 20 Stunden unter dem Mikroskop beobachtet. Ein weiteres Team hat das gesamte Gehirn in Zebrafischlarven abgebildet und verschiedene Proteine speziell markiert – das alles mit gestochen scharfen Bildern, die ein arbeitendes Gehirn zeigen. „AutoPilot” hat dabei in vielen Fällen die Unschärfe bei räumlich weit verteilten fluoreszierenden Markern automatisch ausgeglichen und bereinigt. „Wir nutzen das System seit gut zwei Jahren an verschiedenen Mikroskopen und wir können bestätigen, dass die Bildqualität um Welten besser ist”, sagt Philipp Keller, der die Studien gemeinsam Gene Myers leitete.

Intelligente und selbstgesteuerte Lichtblattmikroskope dieser Art werden die Digitalisierung der Biologie entscheidend vorantreiben, den Einsatz der Lichtblattmikroskopie in Hochdurchsatz-Screens der Pharmaforschung ermöglichen und dabei helfen, digitale Atlanten von gängigen Modellorganismen zu erstellen.

Originalpublikation:
Loïc A Royer, William C Lemon, Raghav K Chhetri, Yinan Wan, Michael Coleman, Eugene Myers & Philipp J Keller: Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms. Nature Biotechnology; 31 October, 2016 (DOI: 10.1038/nbt.3708).

Ansprechpartner:
Dr. Loic Royer
Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden
E-Mail: royer@mpi-cbg.de

Katrin Boes
Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden
E-Mail: kboes@mpi-cbg.de

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Einzelmolekül-Fluoreszenzmikroskopie

Einzelne Moleküle auf Nanoebene abbilden?Neue Software simuliert superhochaufgelöste Lichtmikroskopie

Wissenschaftler am Institut für Anatomie und Zellbiologie der Mediznischen Fakultät Heidelberg haben die Opensource Software SuReSim (Super Resolution Simulation) entwickelt.

…mehr
Beobachtung von einzelnen Histidin-markierten Zytoskelletmolekülen mit Hilfe der Super-Resoltuion-Mikroskopie (dSTORM).

Verbessert Beobachtung von ProteinenLeuchtende Miniatursonden für die dSTORM-Mikroskopie

Um Proteine im Mikroskop sichtbar zu machen, werden sie meist auf DNA-Ebene mit fluoreszierenden Proteinen fusioniert. Allerdings sind diese leuchtenden Marker relativ groß, so dass sie die Funktion der Proteine beeinträchtigen können.

…mehr
Vesikeln im Neuron

STED-NanoskopieDas schnellste Nanoskop der Welt

Forscher um Stefan Hell am Deutschen Krebsforschungszentrum (DKFZ) haben die Aufnahmegeschwindigkeit der hochauflösenden optischen STED-Nanoskopie extrem gesteigert.

…mehr
Zebrafisch-Herz in 3D: Max-Planck-Forscher beobachten Herz bei der Arbeit

Zebrafisch-Herz in 3DMax-Planck-Forscher beobachten Herz bei der Arbeit

Bislang waren Mikroskope zu langsam und nicht leistungsfähig genug, das schlagende Herz eines Zebrafisches in 3D aufzuzeichnen. Ein Forscherteam vom Max-Planck-Institut für molekulare Zellbiologie und Genetik ist es nun gelungen, 3D-Filme von einem Zebrafisch-Herz aufzunehmen.

…mehr
Mikroskop alpha300 Ri von Witec

Analytica 2018 – Halle A2, Stand 402Witec präsentiert neues invertiertes konfokales Raman-Mikroskop

Die innovative und leistungsstarke 3D-Raman-Imaging-Technologie von Witec ist jetzt in dem invertierten Mikroskop alpha300 Ri erhältlich.

…mehr
Anzeige

Bildergalerien bei LABO online

Anzeige

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

Anzeige
Anzeige

Mediaberatung