Bismut-Rekord

Unterschiedliche Atomradien erzwingen Entmischung

Rechtzeitig zur Chemiedozententagung: Marburger Gastgeber zeigen, dass Elementsorten im größten Bismut-haltigen Polyanion strikt getrennt vorliegen. 

Käfige an der Kette: Das neuartige Bismut-Anion in zwei verschiedenen Ansichten. (Abbildung: Wiley-VCH)

Was bislang als unerreichbar galt, ist der Marburger Chemieprofessorin Dr. Stefanie Dehnen und ihrem Mitarbeiter Dr. Robert J. Wilson jetzt gelungen: Die beiden haben eine Verbindung hergestellt, die 4 Germanium- und 14 Bismut-Atome in einem Molekülverband enthält. Damit handelt es sich um das größte bekannte Käfigmolekül mit direkt aneinander gebundenen Bismut-Atomen.

Das Team berichtet über seine Ergebnisse in der Fachzeitschrift „Angewandte Chemie“; die aktuelle Ausgabe des Wissenschaftsjournals erscheint zur Chemiedozententagung der Gesellschaft Deutscher Chemiker, die von 13. bis 15. März 2017 in Marburg stattfindet.

Bismut ist das schwerste Metall, das praktisch nicht radioaktiv ist. „Anders als seine direkten Nachbarn im Periodensystem der Elemente – Blei und Polonium – ist es völlig ungiftig“, sagt Dehnen; „in Form bestimmter Salze findet es sogar Anwendung in der Medizin.“ In elementarer Form kommt es als Mineral vor.

Chemikerinnen und Chemiker stellt es jedoch vor Probleme, wie Dehnen darlegt: „Es ist nicht leicht, Bismut-Atome in direkte Metall-Metall-Bindungen zu zwingen. Bis vor kurzem wurde die Bildung von vielatomigen Bismut-Käfigen als derart ungünstig angesehen, dass man davon ausging, mit diesem Element keine großen und komplexen Strukturen realisieren zu können.“

Anzeige

In ihrer aktuellen Publikation beschreiben Dehnen und Wilson, wie die Synthese des neuen Moleküls vonstattengeht: Schmilzt man die chemischen Elemente Kalium, Germanium und Bismut im Verhältnis 2:1:1 zusammen und extrahiert den dabei entstehenden Feststoff mit dem Lösungsmittel Ethylendiamin, so ergibt sich zunächst eine tiefblaue Lösung.

„Mit der Zeit ändert sich die Farbe der Lösung jedoch von Blau über Grün nach Rotbraun, wobei dunkelrote Nadeln kristallisieren“, berichtet Wilson; die Kristallnadeln enthalten die neuartige Bismut-Verbindung – ein Salz, das ein Molekül der Summenformel (Ge4Bi14)4- enthält. „Trotz der langen Reaktionszeit ist die Reaktion reproduzierbar“, betonen Dehnen und Wilson: „Die Produktbildung kann bei Raumtemperatur nach etwa 60 Tagen beobachtet werden, bei 5 °C nach zirka 90 Tagen.“

Das rekordverdächtige Molekül besteht aus zwei Bismut-Käfigen, die je 7 Atome besitzen; sie teilen sich eine gemeinsame Kante, die aus 4 Germanium-Atomen besteht. „Das Gesamtgebilde ist negativ geladen, es handelt sich somit um das Anion der salzartigen Titelverbindung“, legt Dehnen dar. In der „Cambridge Structural Database“, der wichtigsten Strukturdatenbank für entsprechende Stoffe, findet sich kein Molekül mit der gleichen Gesamtstruktur.

Worauf ist die strikte Trennung der Elementsorten in der Verbindung zurückzuführen? „In verwandten Verbindungen mit anderen Elementkombinationen war bisher immer ein möglichst gleichmäßige Verteilung verschiedener Atomsorten in den Molekülen präferiert worden“, führt Dehnen aus. Das Forschungsteam vermutet, dass die Entmischung auf den extrem unterschiedlich großen Atomradien beruht – ein Phänomen, was von makroskopischen Metalllegierungen bekannt ist; hier wurde dies auf molekularer Skala nachvollzogen.

Wie genau sich das große  Bismut-Polyanion bildet, haben die Autoren noch nicht herausgefunden. „Dies wird erst möglich sein, wenn man die Zwischenstufen nachweisen kann, was in diesem Fall aber besonders schwierig ist“, schreiben Dehnen und Wilson.

Stefanie Dehnen lehrt Anorganische Chemie an der Philipps-Universität. Ihre Arbeitsgruppe am Fachbereich Chemie beschäftigt sich mit der Synthese und Charakterisierung von anorganischen und metallorganischen Multikomponenten-Clusterverbindungen. Auch in der breitenwirksamen Vermittlung naturwissenschaftlicher Fragestellungen ist die Hochschullehrerin aktiv: Dehnen ist Direktorin des Mitmachlabors „Chemikum Marburg“. Die aktuelle Arbeit wurde von der Deutschen Forschungsgemeinschaft finanziell gefördert.

Originalveröffentlichung:
Robert J. Wilson & Stefanie Dehnen: (Ge4Bi14)4-: Ein Fall von “Element-Entmischung” auf molekularer Skala, Angewandte Chemie 11/2017

Weitere Informationen:
Prof. Dr. Stefanie Dehnen
Arbeitsgruppe Anorganische Chemie
E-Mail: dehnen@chemie.uni-marburg.de
Homepage: www.uni-marburg.de/fb15/ag-dehnen

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Integriertes Datenmanagement

Ihre im Labor erzeugten Daten können Sie sicher und strukturiert in einem System sammeln. NEC und labfolder bieten ein Mittel für die effiziente Verwaltung großer wissenschaftlicher Datensätze an.

mehr...
Anzeige

Neuer Syntheseweg

Arylboronate leicht gemacht

Teure und toxische Materialien in der chemischen Synthese überflüssig machen: Dieses Ziel verfolgen auch Forscher der Universität Würzburg. Einen neuen Weg dorthin beschreiben sie in der Zeitschrift „Angewandte Chemie“.

mehr...

Labortechnik

Durchflussreaktorsysteme

Die FlowSynTM Produkte sind integrierte Durchflussreaktorsysteme, die von Uniqsis Ltd. für einfache, homogene Reaktionen bis hin zu komplexen Multi-Reagenz-Reaktionen entwickelt wurden.

mehr...
Anzeige
Anzeige

Highlight der Woche

Integriertes Datenmanagement
Die Herausforderung bei der Digitalisierung des Laboralltags besteht im Wechsel von Papierlaborbüchern und Computerdateien zu einer Datenmanagementsoftware, die große Datensätze strukturiert innerhalb eines einzigen Systems sammelt.

Zum Highlight der Woche...

Micro-Components

Kleine Reaktoren, schnelle Fertigung

Gefährliche Stoffe lassen sich in Mikroreaktoren sicher herstellen. Janine van Ackeren und Marion Horn*) Hochwertiges Nitroglyzerin wissen viele Patienten zu schätzen: Es hilft rasch bei Schmerzen und Engegefühl in der Brust. Das Medikament wird zur...

mehr...