Erbgutveränderungen bei Krebs

X-Chromosom besonders betroffen

Gemeinsam mit internationalen Partnern entdeckten Wissenschaftler vom Deutschen Krebsforschungszentrum und der Universität Heidelberg nun erstmals, dass sich bei verschiedenen Krebserkrankungen Erbgutveränderungen im inaktivierten X-Chromosom häufen: Es enthält bis zu viermal so viele Mutationen wie die übrigen Chromosomen. Die in der Zeitschrift Cell veröffentlichten Ergebnisse helfen zu verstehen, wie es in geschädigten Zellen zur Anhäufung von Mutationen kommt, die schließlich zu Krebs führen können.

Jeder Krebs geht auf Erbgutveränderungen zurück. Selten sind sie von den Eltern ererbt, sondern entstehen als so genannte somatische Mutationen im Laufe des Lebens in einzelnen Körperzellen. "Letztendlich ist aber noch größtenteils unbekannt, wodurch es in einer Krebszelle zu der typischen Ansammlung von Mutationen kommt", sagt Prof. Roland Eils, der sowohl im Deutschen Krebsforschungszentrum als auch an der Universität Heidelberg bioinformatische Forschungsabteilungen leitet. Von dem Wissen, wann und wo Mutationen entstehen, versprechen sich die Forscher Aufschlüsse über die frühen Schritte der Entartung von Zellen zu Krebs. Roland Eils koordinierte nun eine internationale Studie, um erstmals bei verschiedenen Krebsarten zu analysieren, wie die somatischen Mutationen im Erbgut der Tumorzellen genau verteilt sind. Denn nicht alle Bereiche des Genoms sind gleichermaßen von den Veränderungen betroffen. Bekannt ist etwa, dass die Anzahl der somatischen Mutationen von der Basenzusammensetzung abhängt oder davon, wie häufig ein Gen abgelesen wird.

Die Forscher werteten für ihre aktuelle Studie die Genomsequenzen von über 400 Tumoren von Patienten mit zwölf verschiedenen Krebserkrankungen aus, darunter Hirntumoren bei Kindern und Erwachsenen, Leukämien und Brustkrebs. Zu ihrer Überraschung stießen die Wissenschaftler bei Krebspatientinnen auf eine noch nie beobachtete Häufung von Mutationen im weiblichen Geschlechtschromosom, dem X-Chromosom. Hier zählten sie bei vielen Krebsarten doppelt, in manchen Fällen sogar viermal so viele Mutationen wie in den übrigen Chromosomen. Diese hohe Mutationsrate betrifft jedoch nicht beide X-Chromosomen gleichermaßen: Alle Zellen des weiblichen Körpers sind mit jeweils zwei dieser Geschlechts-Chromosomen ausgestattet. Von der Embryonalentwicklung an wird in jeder Zelle eines der beiden inaktiviert.

Die erhöhte Mutationsrate betrifft ausschließlich die inaktivierte Kopie. Bei krebskranken Männern, deren Zellen ohnehin nur ein X-Chromosom tragen, tritt das Phänomen nicht auf, ebenso wenig bei inaktivierten X-Chromosomen gesunder weiblicher Zellen. Besonders viele Mutationen fanden sich im inaktivierten X-Chromosom sehr schnell wachsenden Tumoren. Die Forscher entdeckten außerdem, dass es im Verlauf der Krebsentstehung bereits sehr früh zur Anhäufung der Mutationen im inaktivierten X-Chromosom kommt.

Bei der DNA-Verdopplung, die jeder Zellteilung vorausgeht, kommt das inaktivierte X-Chromosom erst ganz am Schluss an die Reihe. "Unsere Theorie ist, dass Zellen, die durch Zufall bereits eine wachstumsfördernde Mutation erfahren haben, durch die beschleunigte Zellteilung in Stress geraten. Möglicherweise fehlt ihnen die Zeit, Fehler zu reparieren oder es mangelt an DNA-Bausteinen. Betroffen von diesen Problemen sind vor allem Erbgutbereiche, die spät verdoppelt werden wie das inaktivierte X-Chromosom", sagt Natalie Jäger, die Erstautorin der Arbeit. Studienleiter Roland Eils ergänzt: "Der Befund hilft uns zu verstehen, wie zellulärer Stress die unheilvolle Kaskade der Krebsentstehung beschleunigt und so dazu beiträgt, dass sich mehr und mehr Mutationen in einer Krebszelle ansammeln."

Anzeige
Anzeige

Das könnte Sie auch interessieren

Anzeige

Strukturbiologie

Huntingtin-Struktur entschlüsselt

Mutationen auf einem einzigen Gen, dem Huntingtin-Gen, sind die Ursache der Huntington-Krankheit. Jetzt haben Forscher mit Hilfe der Kryo-Elektronenmikroskopie die dreidimensionale Struktur des gesunden menschlichen Huntingtin-Proteins...

mehr...
Anzeige

Evolution

Kein Gen ist eine Insel

Eine neue Studie von Calin Guet, Professor am Institut of Science and Technology Austria (IST Austria) und Magdalena Steinrück, PhD Studentin in Guets Gruppe, zeigt, dass die Nachbarschaft eines Gens mitentscheidend ist, ob und wie sich die...

mehr...