Molekül als Qubit

Kupferverbindung als Recheneinheit in Quantencomputern?

Chemiker der Friedrich-Schiller-Universität Jena haben ein Molekül synthetisiert, das die Funktion einer Recheneinheit in einem Quantencomputer übernehmen kann. Die Synthese war eine Herausforderung.

Der Jenaer Doktorand betrachtet ein Laborgefäß mit Kristallen einer neuartigen Verbindung, die möglicherweise in einem Quantencomputer Verwendung finden kann. © Jan-Peter Kasper/FSU

Quantencomputer könnten die Fähigkeiten informationstechnischer Systeme enorm erweitern und somit die Welt verändern. Bis zum ersten tatsächlichen Gerät ist es allerdings noch ein weiter Weg, da vorhandene molekulare Konzepte bisher nicht in Technologien praktisch umgesetzt werden konnten. Forschende weltweit hält das nicht davon ab, neue Ideen für einzelne Bauteile zu entwerfen und zu optimieren. Chemiker der Friedrich-Schiller-Universität Jena haben jetzt ein Molekül synthetisiert, das die Funktion einer Recheneinheit in einem Quantencomputer übernehmen kann. Über ihre Arbeit berichten sie in der aktuellen Ausgabe des Forschungsmagazins „Chemical Communications“.

Molekül mit ausreichend langlebigem Spinzustand

„Um ein Molekül als Qubit – so nennt man die Recheneinheit eines Quantencomputers – einsetzen zu können, benötigt es einen ausreichend langlebigen Spinzustand, der von außen manipuliert werden kann“, erklärt Prof. Dr. Winfried Plass von der Universität Jena. „Das bedeutet, der gerichtete Eigendrehimpuls der Elektronen des Moleküls, also der Spinzustand, muss so stabil sein, dass man Informationen eingeben und auslesen kann.“ Genau diese Bedingung erfüllt das von Plass und seinem Team hergestellte Molekül.

Anzeige

Es handelt sich dabei um eine sogenannte Koordinationsverbindung und enthält somit organische und metallische Bestandteile. „Das organische Material bildet hierbei ein Gerüst, in dem sich die Metallionen auf ganz bestimmte Weise anordnen“, beschreibt Benjamin Kintzel, der federführend an der Herstellung des Moleküls beteiligt war. „In unserem Fall liegt ein dreikerniger Kupferkomplex vor. Das Besondere dabei: Die Kupferionen bilden innerhalb des Moleküls ein exakt gleichseitiges Dreieck.“ Nur so können die Elektronenspins der drei Kupferzentren so stark miteinander wechselwirken, dass das Molekül einen Spinzustand entwickelt, der es zu einem von außen addressierbaren Qubit macht.

„Auch wenn wir bereits wussten, wie unser Molekül theoretisch aussehen soll, so ist die Synthese doch eine ziemlich große Herausforderung“, sagt Kintzel. „Gerade die gleichseitige Dreiecksanordnung tatsächlich zu erreichen, gestaltet sich schwierig, da wir das Molekül kristallisieren müssen, um es genau charakterisieren zu können. Und wie sich ein solches Teilchen im Kristall verhält, lässt sich nur schwer vorhersagen.“ Mit verschiedenen chemischen Werkzeugen und unterschiedlichen Feinabstimmungen während des Herstellungsprozesses ist es aber gelungen, das gewünschte Resultat hervorzubringen.

Informationen einschreiben durch elektrisches Feld

Das in Jena hergestellte Molekül bietet zudem laut theoretischen Vorhersagen einen weiteren elementaren Vorteil gegenüber anderen Qubits. „Der theoretische Bauplan unserer Kupferverbindung sieht vor, dass sich ihr Spinzustand mit elektrischen Feldern auf molekularer Ebene ansteuern lässt“, sagt Plass. „Bisher kommen hier vor allem magnetische Felder zum Einsatz, mit denen man allerdings nicht auf einzelne Moleküle fokussieren kann.“ Eine Forschergruppe im britischen Oxford, die mit den Jenaer Chemikern kooperiert, untersucht diese Eigenschaft des an der Friedrich-Schiller-Universität synthetisierten Moleküls derzeit durch verschiedene Experimente.

Das Chemikerteam der Universität Jena ist davon überzeugt, dass sein Molekül die Anforderungen erfüllt, um als Qubit eingesetzt zu werden. Ob es aber tatsächlich später als Recheneinheit Verwendung findet, lässt sich nur schwer vorhersagen. Denn wie Moleküle tatsächlich in Quantencomputer integriert werden können, dafür gibt es noch keine ultimative Lösung. Dafür ist auch Expertise im Bereich der Chemie gefragt – die Jenaer Experten jedenfalls sind vorbereitet.

Publikation:
Benjamin Kintzel et. al.: „Molecular electronic spin qubits from a spin-frustrated trinuclear copper complex, Chemical Communications 2018,  DOI: 10.1039/c8cc06741d

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

INTEGRA erweitert die Produktfamilie der manuellen EVOLVE-Pipetten

INTEGRA Biosciences erweitert die Produktfamilie der manuellen EVOLVE-Pipetten mit der Einführung einer neuen 16-Kanal-Pipette. Das neue Modell ist ergonomisch gestaltet, um die Produktivität zu steigern und die Handhabung durch den Benutzer zu verbessern, und ist in den Größen 10, 50 und 100 µl erhältlich.

mehr...
Anzeige