Materialwissenschaften

Nanostrukturen aus bisher unmöglichem Material

Wie kombiniert man verschiedene Elemente in einem Kristall? An der TU Wien wurde nun eine Methode entwickelt, bisher unerreichbar hohe Anteile von Fremdatomen in Kristalle einzubauen.

Sven Barths Team entwickelte einen neuen Zugang, der ein besonders schnelles Kristallwachstum mit sehr niedrigen Prozesstemperaturen verbindet. So werden Nanostrukturen aus bisher unmöglichem Material machbar. Bild: TU Wien

Oft möchte man die physikalischen Eigenschaften eines Materials verändern, indem man einen gewissen Anteil eines zusätzlichen Elements hinzufügt. Allerdings gelingt es nicht immer, die gewünschte Menge in die Kristallstruktur des Materials einzubauen. An der TU Wien entwickelte man nun eine neue Methode, mit der bisher nicht erreichbare Mischungsverhältnisse zwischen Germanium und gewünschten Fremdatomen erreicht werden können. So entstehen neue Materialien mit deutlich veränderten Eigenschaften.

Mehr Zinn oder Gallium im Kristall

„In einen Kristall gezielt Fremdatome einzubauen, um seine Eigenschaften zu verbessern, ist eigentlich eine Standardmethode“, sagt Sven Barth vom Institut für Materialchemie der TU Wien. Unsere moderne Elektronik beruht auf Halbleitern mit bestimmten Zusätzen – ein Beispiel dafür sind etwa Siliciumkristalle, in die Fremdatome wie Phosphor oder Bor eingebaut werden.

Auch das Halbleitermaterial Germanium sollte seine Eigenschaften grundlegend ändern und sich eher wie ein Metall verhalten, wenn man eine ausreichende Menge an Zinn beimengt – das war bereits bekannt. Doch in der Praxis war das bisher nicht zu erreichen.

Anzeige

Naiv betrachtet könnte man einfach versuchen, die beiden Elemente stark zu erhitzen, sie in flüssiger Form gut durchzumischen und dann erstarren zu lassen, wie man das seit Jahrtausenden macht, um einfache Metall-Legierungen herzustellen. „Diese einfache thermodynamische Methode versagt aber in diesem Fall, weil sich die beigemischten Atome nicht effizient ins Gittersystem des Kristalls einfügen“, erklärt Sven Barth. „Je höher die Temperatur, umso beweglicher sind die Atome im Material. Das kann dazu führen, dass sich diese Fremdatome nach einem erfolgreichen Einbau aus dem Kristall ausscheiden und im Inneren wieder nur eine sehr geringe Konzentration dieser Atome zu finden ist.“

Sven Barths Team entwickelte daher einen neuen Zugang, der ein besonders schnelles Kristallwachstum mit sehr niedrigen Prozesstemperaturen verbindet. Dabei wird bei der Entstehung des Kristalls laufend die richtige Menge der Fremdatome eingebaut. Die Kristalle wachsen in Form von Drähtchen oder Stäbchen im Nano-Format, und zwar bei deutlich geringeren Temperaturen als bisher, nämlich bei 140-230 °C. „Dadurch sind die eingebauten Atome von Anfang an weniger beweglich, die Diffusionsprozesse sind langsam, die meisten Atome bleiben dort, wo man sie haben will“, erklärt Barth, dessen Forschung in diesem Bereich vom FWF finanziert wird.

Mit dieser Methode gelang es bis zu 28 % Zinn bzw. 3,5 % Gallium in Germanium einzubauen. Das ist erheblich mehr, als bisher durch gewöhnliche thermodynamische Kombination dieser Materialien möglich war – nämlich das 30- bis 50-fache.

Laser, LEDs, Elektronik-Bauteile

Für die Mikroelektronik eröffnet das neue Möglichkeiten: „Germanium ist einerseits gut mit bestehender Silicium-Technologie kombinierbar, und der Zusatz von Zinn bzw. Gallium in solch hohen Konzentrationen bietet andererseits hoch interessante opto-elektronische Anwendungsmöglichkeiten“, sagt Sven Barth. Die Materialien wären etwa für Infrarot-Laser, für Photodetektoren oder neuartige LEDs im Infrarot-Bereich einsetzbar, da sich die physikalischen Eigenschaften des Germaniums durch diese Zusätze signifikant ändern.

Originalpublikationen
Seifner et al., ACSNano 2018, 12, 1236-1241. DOI: 10.1021/acsnano.7b07248  https://pubs.acs.org/doi/pdf/10.1021/acsnano.7b07248
Seifner et al., Chem. Mater., 2017, 29 (22), pp 9802–9813, DOI: 10.1021/acs.chemmater.7b03969 https://pubs.acs.org/doi/10.1021/acs.chemmater.7b03969

 

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Nanomaterialien

Aerographit faltbar wie ein Akkordeon

Seine komplexe Tetrapoden-Struktur verschafft dem 3D-Material Aerographit einzigartige Eigenschaften wie hohe Elastizität und elektrische Leitfähigkeit. Materialwissenschaftler der Christian-Albrechts-Universität zu Kiel (CAU) konnten jetzt die nur...

mehr...
Anzeige

3D-Laserlithographie

Löschbare Tinte für den 3D-Druck

Im 3D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die...

mehr...