Flüssig-Flüssig-Grenzflächen

Emulsionen maßschneidern für neue Materialien

ETH-Materialforscher entwickeln ein Verfahren, mit dem sie Tröpfchen in einer Emulsion gezielt und kontrolliert mit Partikeln ummanteln können, um sie zu stabilisieren. Damit erfüllen sie einen lang gehegten Wunsch von Forschung und Industrie.

Wissenschaftler der ETHZ haben das "Mayonnaise-Problem" gelöst. © Wikimedia Commons, Jules

Mayonnaise ist ein Paradebeispiel für eine Emulsion, die aus einer wässrigen und einer öligen Phase besteht. Man vermischt Öl und Essig, sodass sich unzählige Tröpfchen bilden. Eigelb wird als Emulgator beigemengt, der sich auf die Oberfläche der Tröpfchen begibt und diese dadurch stabilisiert. Macht man es richtig, entsteht eine feine cremige Masse. Wird Öl zu rasch (oder zum falschen Zeitpunkt) hinzugefügt, gerinnt die Mayonnaise: Die Tröpfchen sind nicht beständig genug, verschmelzen, und die Phasen trennen sich auf.

Genau so schwer wie sich mancher Hobbykoch mit der perfekten Mayonnaise tut, tat sich bislang auch die Materialforschung, mit Stabilisatoren oder Emulgatoren kontrolliert Grenzflächen von Tröpfchen in Zweiphasengemischen zu erzeugen. Solche "bewehrten" Grenzflächen sind wichtig, da sie die Tröpfchen und letzten Endes die entsprechende Emulsion stabilisieren. Bis heute ist es Wissenschaftlern nicht gelungen, sowohl das Ausmaß der Partikelbedeckung als auch die Zusammensetzung der Partikel von Grenzschichten solcher Tröpfchen zu regulieren.

Tröpfchen wunschgemäß bedecken

Nun dürfte das "Mayonnaise-Problem" jedoch gelöst sein: Materialforscher der ETH Zürich und der belgischen Universität Leuven unter der Leitung von ETH-Professor Jan Vermant entwickelten eine neue Methode, mit der sie diese Tröpfchen-Grenzflächen in Emulsionen gezielt und wunschgemäß mit den unterschiedlichsten Partikeln bedecken und gestalten können. Das Verfahren wurde soeben im Online-Fachmagazin "Nature Communications" vorgestellt.

Anzeige

"Mit dem klassischen Ansatz – zwei Flüssigkeiten und ein Emulgator mischen, schütteln und das Resultat betrachten – ist es unmöglich, definierte Mengen eines Emulgators in der Grenzfläche der Tröpfchen anzuordnen", betont Vermant. "Da spielt der Zufall mit."

Mit der neuen Methode kann man nun aber im Voraus berechnen und einstellen, welche Menge an Partikeln nötig ist, um einen gewünschten Bedeckungsgrad zu erreichen. Auch haben die Forscher fast beliebig viele Möglichkeiten, welche Partikel sie verwenden wollen und welche Größe diese haben dürfen. In der Regel verwenden sie kugelige Silikatpartikel. Zum Test verwendeten sie aber auch wurm- oder stäbchenförmige. Als Emulgatoren in Frage kommen nun auch Proteine oder Polymere. "Der Ansatz eröffnet uns ungeahnte Möglichkeiten, um neue Materialien zu schaffen", sagt Vermant.

Mikrofluidik-Anordnung macht es möglich

Basis ihrer Methode ist eine Mikrofluidik-Plattform von der Größe eines Mikroskop-Objektträgers. Mithilfe dieser Plattform erzeugen die Forschenden winzige Tröpfchen. Während diese entstehen, fließt eine zweite Phase mit Partikeln ein, die sich an der Grenzfläche der Tröpfchen anlagern.

Die Partikelmenge steuern die Forscher über die Fließgeschwindigkeit, mit der die Partikelphase um die werdenden Tröpfchen strömt. Schließlich wird diese Schicht von derjenigen Phase, in der die Tröpfchen zu liegen kommen (also Wasser im Falle von Öl-Tröpfchen oder umgekehrt), umgeben.

Die fertigen Tröpfchen fließen dann durch einen engen und sehr langen Kanal, der einem Heizkörper gleicht. Auf dem Weg durch diesen Kanal löst sich die das Tröpfchen umgebende Phase, welche die Partikel enthält, langsam in der umgebenden Lösung auf. Den Partikeln bleibt jedoch genug Zeit, sich auf der Oberfläche der Tröpfchen anzuordnen und dieses zu stabilisieren.

Je nach Bedeckungsgrad können einzelne Tröpfchen miteinander verschmelzen. Dabei wiederum bilden sie erdnussähnliche Gebilde. Durch die Verschmelzung ändert sich das Verhältnis von Volumen zu Oberfläche, das heisst, dass den Partikeln auf der Grenzfläche weniger Platz zur Verfügung steht. Die Partikel von zwei Tröpfchen müssen auf engerem Raum zusammenrücken, die Bedeckung des Doppelbläschens wird also dichter. Auf diese Weise ummantelte Bläschen sind stabil – und damit ist es auch die Emulsion, deren Eigenschaften auch von der Form und Länge der Tröpfchen abhängt.

Spielen mit Emulgatoren

Die Tröpfchen lassen sich je nach Zweck mit Partikeln unterschiedlichster Art bedecken. Die Forscher können auch Partikel unterschiedlicher Grösse, verschiedener chemischer Zusammensetzung oder sogar unterschiedlicher Polarität (hydrophob vs hydrophil) einsetzen."Wir können mit unserer Methode auch die Form von Tröpfchen bestimmen, und das ermöglicht uns die Schaffung von Emulsionen mit bisher undenkbaren Eigenschaften", freut sich Vermant. Das nun gefundene Prinzip sei sehr robust. "Zehn Jahre haben wir daran geforscht, nun ist das Problem gelöst."

Das beschriebene Verfahren eignet sich nur für die Forschung, da es erst in sehr kleinem Maßstab funktioniert. Die ETH-Forscher arbeiten jedoch daran, dieses hochzuskalieren, sodass größere Mengen verarbeitet werden können. Sie sind dabei, eine Apparatur zu entwickeln, die sich von der Größe und vom Durchsatz her bereits für Testverfahren in der Industrie eignen würde.

In noch größerem Massstab sind jedoch auch Anwendungen in der Lebensmittel-, der Pharma-, Kosmetik- oder auch in der Erdölindustrie denkbar, etwa für das Abtrennen von Öl und Wasser bei der Ölförderung.

Originalpublikation:
Dockx G, Geisel S, Moore DG, Koos E, Studart AR, Vermant J. Designer liquid-liquid interfaces made from transient double emulsions. Nature Communicationsvolume 9, Article number: 4763 (2018). DOI: 10.1038/s41467-018-07272-0 DO

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Integriertes Datenmanagement

Ihre im Labor erzeugten Daten können Sie sicher und strukturiert in einem System sammeln. NEC und labfolder bieten ein Mittel für die effiziente Verwaltung großer wissenschaftlicher Datensätze an.

mehr...
Anzeige
Anzeige
Anzeige

Highlight der Woche

Integriertes Datenmanagement
Die Herausforderung bei der Digitalisierung des Laboralltags besteht im Wechsel von Papierlaborbüchern und Computerdateien zu einer Datenmanagementsoftware, die große Datensätze strukturiert innerhalb eines einzigen Systems sammelt.

Zum Highlight der Woche...