Genomforschung

Pangenom eines verbreiteten Pilzes analysiert

Aspergillus fumigatus ist ein in der Umwelt weit verbreiteter Pilz. Er kann bei Menschen lebensbedrohliche Infektionen verursachen, während eng verwandte Pilzarten harmlos sind. Ein internationales Forscherteam hat die große genetische Vielfalt des Erregers genauer unter die Lupe genommen.

Sporenträger von Aspergillus fumigatus. Die als Konidien bezeichneten Sporen werden über die Luft verbreitet und gelangen leicht in die Atemwege, wo sie bei immungeschwächten Personen schwere Infektionen auslösen können. © Grit Walther/Leibniz-HKI

Der Pilz Aspergillus fumigatus verursacht weltweit bei mehr als 300 000 Menschen pro Jahr schwere Infektionen. Insbesondere bei immungeschwächten Menschen endet eine Infektion mit Aspergillus fumigatus in bis zu 50 % der Fälle tödlich. Behandelt werden diese Krankheiten meist mit sogenannten Triazol-Antimykotika. Im Laufe der Jahre haben Resistenzen gegen diese Arzneimittel immer weiter zugenommen, was es zusätzlich erschwert, diese Art von Infektionen zu identifizieren und angemessen zu behandeln.

„Trotz dieser hohen Zahl von Infektionen pro Jahr fehlte bisher eine detaillierte Untersuchung der genomischen Vielfalt sowohl in klinischen Proben als auch in Isolaten aus der Umwelt. Insbesondere galt es für uns herauszufinden, welche Bedeutung diese genetische Vielfalt für den Verlauf der Infektion und die Entwicklung von Resistenzen gegen Antimykotika hat“, erklärt Gianni Panagiotou, Leiter der Forschungsgruppe Systembiologie und Bioinformatik am Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie – Hans-Knöll-Institut in Jena (Leibniz-HKI). Die Forscher sind sich sicher, dass die innerartliche genetische Diversität der Erreger für die Infektion auch eine wichtige Rolle spielt.

Anzeige

Genetische Vielfalt erforscht

In seiner Studie sequenzierte und analysierte das Team, dem Forschende aus Jena, Würzburg und Hongkong angehören, eine große Anzahl von Genomen dieses weit verbreiteten Schimmelpilzes, darunter Stämme aus der Umwelt sowie klinische Proben. Diese Fülle an genomischen Informationen ergab, dass sich die verschiedenen Mitglieder der Spezies hinsichtlich ihrer Gene erheblich unterscheiden. Die Autoren definierten damit auch den gesamten Genbestand der Art, das sogenannte Pangenom, das die genetische Bandbreite von Aspergillus fumigatus umfasst. Dabei zeigte sich, dass ca. zwei Drittel der genetischen Information sogenannte Kern-Gene umfasst, die in allen Isolaten vorkommen. Das verbleibende knappe Drittel beinhaltet hingegen akzessorische Gene, die nicht bei allen Isolaten zu finden sind. Sie sind demzufolge für das Wachstum des Pilzes entbehrlich, könnten aber eine noch unentdeckte Rolle für den Pilz in der Umwelt und bei der Infektion des Menschen spielen.

Im Vergleich der Genome aus Umwelt- und Patientenproben stellte sich heraus, dass eine bestimmte genetische Linie innerhalb der Art Aspergillus fumigatus mit größerer Wahrscheinlichkeit Infektionen beim Menschen verursacht. Die Genome dieser Gruppe wiesen besondere Merkmale auf, beispielsweise codierten sie für mehr Transmembrantransporter, eisenbindende Proteine und Enzyme des Grundstoffwechsels. Solche besonderen genetischen Merkmale sind als potenzielle Angriffspunkte für neue Wirkstoffe interessant, da sie eine Rolle für das Überleben des Pilzes in der menschlichen Lunge spielen könnten.

Außerdem identifizierten die Forscherinnen und Forscher in einer „genomweiten Assoziationsstudie“ kleine genetische Unterschiede zwischen den Isolaten. Bestimmte Abweichungen in der DNA-Sequenz traten in klinischen Isolaten statistisch deutlich häufiger auf als in Umwelt-Isolaten. Mit dieser Methode identifizierte das Team drei Gene, die in noch unbekannter Weise mit der Triazol-Resistenz in Verbindung stehen. „Hier sehen wir ebenfalls vielversprechende Ziele für künftige Therapieoptionen. Unsere Aufmerksamkeit gilt daher dem weiteren Studium derjenigen Gene und Proteine, die mit bislang unentdeckten Resistenzmechanismen im Zusammenhang stehen“, sagt Amelia E. Barber, Erstautorin der Studie und Leiterin der Nachwuchsgruppe Fungal Informatics am Leibniz-HKI.

Ausblick

Die Ergebnisse ihrer bioinformatischen Analysen stellen die Autoren im Fachjournal Nature Microbiology vor. Ihre globale Sicht auf das genetische „Instrumentarium“ von Aspergillus fumigatus könnte hilfreich für mögliche neue Therapieansätze sein. So kommen solche Gene und Signalwege, die in allen Vertretern der Art vorhanden sind, als gute therapeutische Ziele in Betracht. Hingegen wäre es ungünstig, mit irgendeinem möglichen neuen Medikament auf ein Gen abzuzielen, das nur in 90 % der Vertreter des Pilzes vorkommt, während 10 % der Erreger nicht betroffen sind.

Die Studie zeigt auch, dass mit der genetischen Diversität innerhalb einer Art stets eine Momentaufnahme von fortwährenden Evolutionsprozessen betrachtet wird. Die genetische Ausstattung des untersuchten Pilzes unterliegt durch intensive Auseinandersetzung mit seiner Umwelt einer hohen Dynamik und kann über längere Zeiträume hinweg zur Aufspaltung in stärker spezialisierte (Unter-)Arten führen.

Förderung

Für ihre Arbeiten konnten sich die Forscherinnen und Forscher auf die Zusammenarbeit in großen Forschungsverbünden stützen. Den Zugang zu den klinischen Isolaten ermöglichte das am Leibniz-HKI angesiedelte Nationale Referenzzentrum für invasive Pilzerkrankungen, das vom Robert Koch-Institut aus Mitteln des Bundesgesundheitsministeriums unterstützt wird. Das vom BMBF geförderte Konsortium InfectControl bot den Rahmen für die Arbeiten zu Triazol-Resistenzen und deren Verbreitung in der Umwelt sowie bei klinischen Isolaten. Der von der Deutschen Forschungsgemeinschaft geförderte Exzellenzcluster Balance of the Microverse ermöglichte die Einrichtung der Nachwuchsgruppe Fungal Informatics und unterstützte die bioinformatische Analyse der immensen Datensätze.

Originalpublikation:
Barber AE, Sae-Ong T, Kang K, Seelbinder B, Li J, Walther G, Panagiotou G, Kurzai O (2021): Aspergillus fumigatus pan-genome analysis identifies genetic variants associated with human infection. Nature Microbiology 6, 1526-1536. https://doi.org/10.1038/s41564-021-00993-x

Quelle: Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie – Hans-Knöll-Institut (HKI)

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige

Newsletter bestellen

Immer auf dem Laufenden mit dem LABO Newsletter

Aktuelle Unternehmensnachrichten, Produktnews und Innovationen kostenfrei in Ihrer Mailbox.

AGB und Datenschutz gelesen und bestätigt.
Zur Startseite