Mit Viren gegen Bakterien

Wie Bakteriophagen die bakterielle Zellwand angreifen

Eine Untersuchung an DESYs Röntgenring PETRA III zeigt, wie spezielle Viren den lebensbedrohlichen Durchfallkeim Clostridium difficile abtöten. Die Studie von Forschern der Hamburger Niederlassung des Europäischen Laboratoriums für Molekularbiologie, EMBL, enthüllt, wie bestimmte Enzyme dieser Viren ausgeschüttet werden, um die Zellwand der Bakterien aufzulösen.

Ein Clostridium-difficile-Bakterium unter dem Elektronenmikroskop. (Bild: Jennifer Hulsey / CDC)

Die Arbeit eröffnet neue Möglichkeiten für die Entwicklung von Therapien mit sogenannten Bakteriophagen, also auf Bakterien spezialisierten Viren, wie das Team um EMBL-Gruppenleiter Rob Meijers im Fachjournal "PLoS Pathogens" schreibt.

"Angesichts wachsender Antibiotikaresistenzen können Bakteriophagen und ihre Enzyme eine vielversprechende Alternative bieten", erläutert Meijers. "Unsere Ergebnisse können uns helfen, wirkungsvolle, spezialisierte Bakteriophagen zu entwickeln, nicht nur für Infektionen mit Clostridium difficile, sondern für ein breites Spektrum von Bakterien, die für Gesundheit, Landwirtschaft und Lebensmittelindustrie von Bedeutung sind."

Bakteriophagen sind Viren, die Bakterien infizieren und zerstören, ohne andere Organismen anzugreifen. Sie wurden bereits vor mehr als einem Jahrhundert als Behandlungsmöglichkeit für bakterielle Infektionen entdeckt. Mit Einführung der Antibiotika schwand jedoch das Interesse an den medizinisch schwieriger anzuwendenden Bakteriophagen. Durch die zunehmenden Antibiotikaresistenzen erlebt die Forschung an Bakteriophagen derzeit jedoch einen Aufschwung.

Anzeige

Das Bakterium Clostridium difficile wird wegen zunehmender Resistenzen in vielen Kliniken und anderen Gesundheitseinrichtungen zu einem ernsthaften Problem. Es kann lebensgefährliche Durchfälle auslösen, insbesondere bei Patienten, die aus anderen Gründen eine Breitspektrum-Antibiotikatherapie erhalten. Clostridium difficile gehört zur normalen menschlichen Darmflora und ist für gesunde Menschen unproblematisch. Bei einer Behandlung mit Antibiotika wird jedoch ein Großteil der normalen Darmflora abgetötet, so dass sich die widerstandfähigeren Clostridium-difficile-Keime unter Umständen unkontrolliert vermehren können, was zu Komplikationen wie schweren Fällen von Durchfall führen kann. Die gemeldete Zahl solcher schweren Verläufe hat sich nach Daten des Berliner Robert Koch-Instituts von 2008 bis 2013 in Deutschland verdreifacht.

Diese Fälle sind oft schwer zu behandeln, weil die Durchfallkeime auf viele Antibiotika nicht mehr ansprechen. Eine mögliche Behandlungsalternative wären Bakteriophagen. Diese Viren dringen in Bakterienzellen ein und vermehren sich, bis die Zelle aufbricht und frische Bakteriophagen ausschüttet. Im Gegensatz zu Antibiotika sind Bakteriophagen hochspezialisiert auf das Ziel, das sie angreifen. Allerdings sind sie schwer zu kontrollieren, und auch gegen Bakteriophagen können Bakterien rasch Resistenzen entwickeln. Für die Entwicklung einer wirksamen Therapie mit Bakteriophagen müssen Forscher daher den Lebenszyklus dieser Viren noch genauer verstehen - insbesondere, wie die Viren die Zellwand der Bakterien zerstören. Zwar ist bekannt, dass die Bakteriophagen dazu Enzyme namens Endolysine produzieren. Wie diese Enzyme jedoch aktiviert werden, ist ein fehlender wichtiger Stein des Puzzles.

Mit dem intensiven Röntgenlicht von DESYs Forschungslichtquelle PETRA III haben die Wissenschaftler nun einen Aktivierungsmechanismus von Endolysinen entdeckt, die Bakterien der Gattung Clostridium angreifen. "Diese Enzyme scheinen von einer gestreckten, unter Spannung stehenden Form, bei der je ein Paar von Endolysinen verknüpft ist, zu einem gelösten Zustand umzuschalten, in dem beide Endolysine Seite an Seite liegen", erläutert EMBL-Forscher Matthew Dunne. "Das Umschalten von einem Zustand zum anderen setzt das Enzym frei, das dann beginnt, die bakterielle Zellwand abzubauen." Sobald die Zellwand anfängt zusammenzubrechen, kann die Bakterienzelle dem inneren Druck nicht mehr standhalten, explodiert und setzt die neuen Bakteriophagen frei, die wiederum weitere Bakterienzellen infizieren.

Gemeinsam mit Melinda Mayer und Arjan Narbad vom britischen Institut für Lebensmittelforschung in Norwich haben die Wissenschaftler zwei unterschiedliche Endolysine verglichen: Eines von Bakteriophagen, die Clostridium difficile angreifen, und ein anderes, das die Zellwand von Clostridia-Keimen verdaut, die Probleme in der Käseproduktion verursachen. Mit Röntgenkristallographie und weiteren Techniken der Strukturbiologie konnten die Forscher an der EMBL-Messstation auf dem Hamburger DESY-Campus die dreidimensionale Struktur der Enzyme bestimmen und so auf ihre Funktionsweise schließen.

"Bemerkenswerterweise konnten wir beobachten, dass beide Endolysine einen gemeinsamen Aktivierungsmechanismus besitzen", berichtet Dunne. Daraus folgern die Forscher, dass der Übergang vom gespannten zum gelösten Zustand wahrscheinlich eine häufige Taktik ist. Diese Erkenntnis könnte möglicherweise dazu dienen, weitere Viren zu Verbündeten im Kampf gegen andere antibiotikaresistente Bakterien zu machen.

Originalveröffentlichung:

"The CD27L and CTP1L endolysins targeting Clostridia contain a built-in trigger and release factor"; Matthew Dunne, Haydyn D. T. Mertens, Vasiliki Garefalaki, Cy M. Jeffries, Andrew Thompson, Edward A. Lemke, Dmitri I. Svergun, Melinda J. Mayer, Arjan Narbad and Rob Meijers; "PLoS Pathogens", 2014; DOI: 10.1371/journal.ppat.1004228.

Wissenschaftlicher Ansprechpartner:

Rob Meijers, European Molecular Biology Laboratory, Hamburg, r.meijers@embl-hamburg.de

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Schnellster Feuchtebestimmer am Markt für Feuchte-/Feststoffgehalt

Der Feuchtebestimmer SMART 6 analysiert den Feuchtegehalt jeder Probe in nur 2 min. Ob nass oder trocken, Feststoff, Pulver oder Suspension – egal! Alle Probenarten werden dank der Kombination Mikrowelle/Halogen schnell und präzise bis zur Gewichtskonstanz getrocknet. Dank der Temperaturkontrolle sind die Messwerte vergleichbar zu den Standardmethoden.

mehr...
Anzeige

Fachbeitrag

BioRegionen in Nordrhein-Westfalen

In insgesamt 16 Felder ist die Clusterpolitik im bevölkerungsreichsten Bundesland Nordrhein-Westfalen aufgeteilt. Hier bildeten sich seit den 1990er Jahren fünf große Bio-Regionen unter Schirmherrschaft der BIO.NRW heraus: Bioriver – Live...

mehr...

Fachbeitrag

BioRegion STERN

Mit der 1999 neu gegründeten BioRegion STERN strahlt der Großraum Stuttgart mit Tübingen, Esslingen, Reutlingen sowie dem Neckar-Alb-Kreis weit über die Landesgrenzen von Baden-Württemberg hinaus. Hier überwiegen die biomedizinischen und...

mehr...
Anzeige

Schnelle automatisierte Lösemittel Extraktion

Das EDGE Extraktionssystem ist ein sequentielles System für die schnelle automatisierte Lösemittel-Extraktion. Damit werden unterschiedliche Proben schnell in nur 5 min. extrahiert. Die Extraktionen im EDGE werden unter Druck und bei erhöhten Temperaturen durchgeführt, was zu einer starken Beschleunigung der Reaktionskinetik führt.

Zum Highlight der Woche...

Fachbeitrag

BioRegion Martinsried

Auf der BIO-Europe in München wurde am 14.11.2008 offiziell von Bayerns Staatsregierung mitgeteilt, dass München mit Martinsried eindeutig den Schwerpunkt der schnell wachsenden Biotech-Landschaft in Deutschland darstelle. Über 130 Biotech-Firmen...

mehr...

Fachbeitrag

Knochenfunde geben Rätsel auf

Der Kyffhäuser birgt viele Geheimnisse. Bekannt ist das Mittelgebirge südlich des Harzes durch die Barbarossa-Sage. Doch der mit Höhlen durchzogene Berg gibt in noch ganz anderer Hinsicht Rätsel auf. Bei Ausgrabungen nahe dem Ort Bad Frankenhausen...

mehr...

Fachbeitrag

Vorteile im Verbund

Die Bio-Europe Partnering 2008 in Mannheim vom 17. bis 19.11.2008 nutzten die Pharma-Branchenriesen Roche, Merck Serono und Abbott zur Mitteilung an die Fachwelt, dass sie im Rahmen des siegreichen Bio-Clusters Rhein-Neckar noch enger zusammen...

mehr...