Intelligente Textilien

Mit organischen Halbleitern beschichtete Fasern

Intelligente Textilien stehen erst am Anfang ihrer Entwicklung. Das Problem bisher: Die elektronischen Bauteile, sogenannte organische Halbleiterbauelemente, konnten nicht reproduzierbar auf dreidimensionale Strukturen wie Fasern aufgebracht werden. Doch nun haben Darmstädter Materialwissenschaftler eine Maschine entwickelt, mit der elektronisch aktive Materialien auf Fäden aufgedampft werden können.

"Die reproduzierbare Rotationsbeschichtung mit Halbleiterbauelementen eröffnen im Bereich der intelligenten Textilien theoretisch unzählige Anwendungen", berichtet Prof. Heinz von Seggern, Leiter des Fachgebiets Elektronische Materialeigenschaften der TU Darmstadt. Mit anderen Worten: Das Einweben von elektronischen Bauteilen in die Kleidung ist damit aus ingenieurstechnischer Sicht einen wichtigen Schritt vorangekommen.

Intelligente Textilien rücken näher
Der Materialwissenschaftler Tobias Könyves-Toth, der die Idee für die Maschine im Rahmen des Verbundprojektes LUMOLED des Bundesministeriums für Bildung und Forschung (BMBF) konzipiert hat, konnte organische Halbleiterbauelemente auf Glasfasern aufdampfen: "Wir haben uns dabei organischen Leuchtdioden gewidmet, sogenannten OLEDs, weil sie die höchsten Anforderungen an die Substrate haben. Es ist uns nun erstmals gelungen, funktionstüchtige OLEDs auf einen Faden aufzubringen und ihn zum Leuchten zu bringen. Das Aufbringen anderer Bauelemente, wie zum Beispiel Transistoren oder Solarzellen, hat andere Probleme, ist bei der Beschichtung aber im Vergleich weniger aufwändig."

Ein Problem bei der Faserbeschichtung ist, dass sie unter Vakuumbedingungen stattfinden muss, denn OLEDs sind gegen Sauerstoff und Wasser hochempfindlich. "Wir haben mit der Rotationsbeschichtung eine Möglichkeit gefunden, die Faser im Vakuum so zu drehen, dass sie völlig gleichmäßig beschichtet wird und wir sie anschließend ohne Luftkontakt aus dem Vakuum heraus bekommen", erläutert Könyves-Toth.

Anzeige
Die Darmstädter Materialwissenschaftler Prof. Heinz von Seggern (rechts) und Tobias Könyves-Toth (links) haben eine Maschine entwickelt, mit der elektronisch aktive Materialien auf Fäden aufgedampft werden können. Das Einweben von elektronischen Bauteilen in die Kleidung ist damit aus ingenieurstechnischer Sicht einen wichtigen Schritt vorangekommen. (Bild: Katrin Binner / TU Darmstadt)

Die Bauteile werden auf den Faden aufgebracht, indem die Materialien im Vakuum erhitzt werden, bis sie verdampfen. Wie bei auf dem Herd erhitztem Wasser, aus dem Wasserdampf aufsteigt und auf der Fensterscheibe kondensiert, kondensieren die Materialien auf der Faser. Insgesamt sieben Schichten müssen auf die Faser aufgetragen werden, von denen einzelne die Dicke von gerade einmal ein paar Atomen besitzen. "Insgesamt sind die auf die Faser aufgetragenen Schichten etwa 200 Nanometer dick - das heißt, Feinstaubpartikel sind 50 Mal größer als die Schichtdicke der OLEDs." Und hier tut sich ein weiteres Hindernis auf: Textilfäden haben eine raue Oberfläche. Die elektronischen Bauteile funktionieren jedoch nur auf glatten Oberflächen - schon winzige Kratzer von mehr als ein paar Nanometern Tiefe können zu Defekten wie Kurzschlüssen führen.

Noch mangelt es an Langlebigkeit
"Für unsere ersten Versuche haben wir deswegen Glasfasern verwendet", erzählt Könyves-Toth, "denn sie haben eine sehr glatte Oberfläche." Aber Glasfasern sind spröde und eignen sich nicht zum Weben von Textilien. Daher unternehmen die Darmstädter nun auch Versuche mit von Polymeren ummantelten Glasfasern. Ziel ist es, für Textilien verwendete Polymerfasern mit organischen Halbleiterbauteilen zu bestücken.

Angefangen hat Könyves-Toth mit einer Faser von 1 Millimeter Dicke. Jetzt ist man ein gutes Stück weiter: "Wir haben schon eine Faser von 500 Mikrometern auf 5 Millimetern zum Leuchten gebracht", freut sich Könyves-Toth, "und sogar wenn die Faser gebogen wurde, funktionierten die OLEDs noch."

Wenn die Versuche auch schon einen großen Erfolg darstellen - der Weg hin zu intelligenten Textilien ist noch weit. Denn die elektrische Funktionstüchtigkeit ist nicht von langer Dauer. Noch gibt es nämlich keine Lösung für eine Schutzschicht, die die organischen Halbleitermoleküle vor Sauerstoff und Feuchtigkeit schützen könnten. Erste Ansätze hierfür existieren bereits, aber bis das Verfahren zur Marktreife gelangt, wird noch einige Zeit ins Land gehen. Und auch die bislang verwendeten Fasern sind noch zu spröde und zu dick, um sie in Textilien verweben zu können. Auch halten die die leuchtenden Fasern die mechanische Beanspruchung beim Verweben der Fäden und beim Tragen der Kleidung noch nicht aus.

Die Darmstädter Materialwissenschaftler jedenfalls prüfen nun erst einmal eine Patentanmeldung. Ihre Entwicklung stößt jedenfalls auf reges Interesse in der Textilindustrie, wie von Seggern und Könyves-Toth in Griechenland erfahren durften. Dort haben sie Anfang Juli auf dem International Symposium on Flexible Organic Electronics (ISFOE 13) ihr Verfahren vorgestellt.

Es gibt zwar noch viel zu tun, aber ein erster Schritt hin zur reproduzierbaren und kontrollierbaren Produktion intelligenter Textilien ist getan. Und Anwendungsmöglichkeiten gibt es praktisch grenzenlos - "die einzige Grenze, die hier existiert, ist die der menschlichen Phantasie", formuliert es Könyves-Toth.

Kontakt:
Tobias Könyves-Toth
E-Mail: koenyves@e-mat.tu-darmstadt.de

Anzeige

Das könnte Sie auch interessieren

Anzeige

OLEDs

Ultradünnschicht erhöht Effizienz deutlich

Wissenschaftler am Max-Planck-Institut für Polymerforschung in Mainz haben ein unerwartetes Versuchsergebnis erhalten: Sie haben eine neue Methode entdeckt, um die Kontakte in OLEDs zu verbessern. Dieser neue Ansatz führt zu einer höheren...

mehr...

Organische Leuchtdioden

Molekülbibliotheken für OLEDs

Organische Leuchtdioden (OLEDs) sind vielversprechende Kandidaten für flexible Flachbildschirme. Mit einem von Chemikern der Goethe-Universität entwickelten Screening-Verfahren lassen sich Leitstrukturen zur Optimierung der Lichtausbeute nun...

mehr...
Anzeige

Schnellster Feuchtebestimmer am Markt für Feuchte-/Feststoffgehalt

Der Feuchtebestimmer SMART 6 analysiert den Feuchtegehalt jeder Probe in nur 2 min. Ob nass oder trocken, Feststoff, Pulver oder Suspension – egal! Alle Probenarten werden dank der Kombination Mikrowelle/Halogen schnell und präzise bis zur Gewichtskonstanz getrocknet. Dank der Temperaturkontrolle sind die Messwerte vergleichbar zu den Standardmethoden.

mehr...
Anzeige
Anzeige

Schnelle automatisierte Lösemittel Extraktion

Das EDGE Extraktionssystem ist ein sequentielles System für die schnelle automatisierte Lösemittel-Extraktion. Damit werden unterschiedliche Proben schnell in nur 5 min. extrahiert. Die Extraktionen im EDGE werden unter Druck und bei erhöhten Temperaturen durchgeführt, was zu einer starken Beschleunigung der Reaktionskinetik führt.

Zum Highlight der Woche...

Superflach und homogen

Licht für die Mikroskopie

Mit der Backlight-Beleuchtung seelectorLUX OLED von hema electronic kommen erstmals OLEDs als Lichtquelle in der Mikroskopie zum Einsatz und setzen neue Maßstäbe in Homogenität, Farbtreue und Formfaktor bei Leuchtfeldern.

mehr...