Analytik

Wassermolekül-Strukturen auf Oberflächen

Ein Team der TU Wien konnte mit Hilfe weiterentwickelter Analysemethoden zeigen, dass Wassermoleküle komplizierte brückenartige Strukturen bilden, wenn sie sich an Oberflächen anlagern.

Wassermoleküle bilden komplexe Strukturen auf der Eisenoxid-Oberfläche. (Bild: TU Wien)

Wasser ist eine erstaunlich komplizierte Flüssigkeit. Wie sich einzelne Wassermoleküle an unterschiedlichen Materialien anlagern ist für viele wichtige Vorgänge entscheidend – etwa für Korrosion und Verwitterungseffekte oder für das optimale Funktionieren von Katalysatoren. Einem Team der TU Wien gelang es nun, die Struktur von Wassermolekülen auf Eisenoxid-Oberflächen genau zu entschlüsseln. Wie sich dabei zeigte, können sich die Wassermoleküle auf der Oberfläche zu komplizierten, brückenartigen Strukturen zusammenfinden. Diese Strukturen spielen für chemische Reaktionen an der Oberfläche eine wichtige Rolle.

„Das Besondere an Wassermolekülen ist, dass sie sogenannte Wasserstoff-Brückenbindungen ausbilden können“ erklärt Prof. Gareth Parkinson vom Institut für Angewandte Physik der TU Wien. „Die elektrische Ladung ist nicht gleichmäßig verteilt. Das Sauerstoff-Atom ist ein bisschen negativ geladen, die Wasserstoffatome ein bisschen positiv.“ Dadurch können sich Bindungen zwischen Wassermolekülen bilden - die berühmten Wasserstoff-Brückenbindungen - oder es können auch Bindungen zwischen einem Wassermolekül und anderen Molekülen entstehen. Wenn sich Wassermoleküle an Oberflächen anlagern, kann die Sache ganz anders aussehen: Bei niedrigen Temperaturen entstehen erstaunlich komplexe, stabile Strukturen.

Anzeige

Einsatz mehrerer Analysemethoden
„Indirekte Hinweise auf eine solche Strukturbildung gab es bereits“, sagt Ulrike Diebold von der TU Wien. „Aber um die Struktur des Wassers auf Eisenoxid-Oberflächen wirklich sichtbar zu machen, mussten wir die neuesten und besten Messmethoden noch weiter verbessern und ganz an die Grenzen des Möglichen gehen.“ Bei niedrigen Temperaturen wird zunächst im Vakuum ein Strahl von Wassermolekülen auf die Oberfläche geblasen. Dann wird die Oberfläche vorsichtig erwärmt, bis zu einer Temperatur von ungefähr -30 °C. Dabei werden die Wasser-Strukturen nach und nach aufgebrochen. Die Wassermoleküle verlassen einzeln die Oberfläche und werden an einem Detektor aufgefangen. „Wir können genau messen, wie viele Wassermoleküle bei welcher Temperatur die Oberfläche verlassen. Daraus kann man auf die Bindungsenergie schließen – und das sagt uns, um welche Molekül-Strukturen es sich gehandelt hat“, erklärt Gareth Parkinson. Gleichzeitig wurden mit Hilfe eines speziellen vibrationsgedämpften Hochleistungsmikroskops hochauflösende Bilder von der Oberfläche erstellt, auf denen man die Wasser-Strukturen erkennen kann, und zusätzlich wurden aufwändige Computersimulationen entwickelt, um die geometrische Anordnung der Wassermoleküle auf Quanten-Ebene zu erklären. „Wir haben somit drei Werkzeuge zur Verfügung, um die Wasser-Strukturen zu untersuchen, und das ist auch nötig, um ein zuverlässiges Resultat zu erhalten“, sagt Gareth Parkinson. „Alle drei Analysen stimmen bestens überein, daher können wir mit großer Sicherheit sagen, dass wir die Strukturbildung von Wasser auf Eisenoxid-Oberflächen nun verstehen.“

Wie sich zeigt, bilden sich mehrere Strukturen: Kaum ein Wassermolekül sitzt alleine auf der Oberfläche, man findet Paare und Dreiergruppen von Wassermolekülen, und zusätzlich treten komplexere Strukturen aus sechs oder acht Molekülen auf, die sich wie elliptisch gekrümmte Brückenbögen über die Eisenoxid-Oberfläche spannen. „Unser Hauptziel war, die Analysemethoden so weiterzuentwickeln, dass solche Molekül-Strukturen eindeutig nachweisbar werden – und das ist uns gelungen“, sagt Ulrike Diebold. „Die Methode, die wir hier für Eisenoxid eingesetzt haben, lässt sich genauso auch auf andere Materialien übertragen.“

Publikation:
Water agglomerates on Fe3O4(001), Meier et al., PNAS (2018). DOI: 10.1073/pnas.1801661115; www.pnas.org/content/115/25/E5642

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige