Forschungsprojekt bringt Licht ins Dunkel

Wie interagiert Graphen?

Die Wechselwirkungen von Graphen und seiner Umgebung haben maßgeblichen Einfluss auf seine Anwendbarkeit in der Halbleiterindustrie. Dank der Ergebnisse eines Forschungsprojektes werden sie nun besser verstanden und besser kontrollierbar.

Manipulationen der Struktur von Graphen liefern neue Erkenntnisse über dieses Wundermaterial (Quelle: Nikolay I. Verbitskiy).

Graphen ist eine einlagige Kohlenstoffschicht. Das Potenzial dieses mit einmaligen strukturellen und elektronischen Eigenschaften ausgerüsteten Wundermaterials ist enorm und wurde bereits viel gepriesen – an den konkreten Umsetzungen und Anwendungen fehlt es aber immer noch. Wie so oft steckt der Teufel im Detail, wenn es um eine nutzbare Anwendung geht. Doch in einem internationalen Projekt konnten nun viele Tücken des Materials mit Unterstützung des Wissenschaftsfonds FWF geklärt werden.

Halbleiter als Ziel
„Einzelne Bauelemente auf Graphen-Basis zeigen ja bereits herausragende Eigenschaften“, erläutert der Projektleiter Thomas Pichler vom Bereich Elektronische Materialeigenschaften der Universität Wien, „doch der große Durchbruch in der Anwendung als integrierte elektronische Bauelemente steht noch aus. Es ist ganz einfach bisher nicht gelungen, dieses Material in einer zuverlässig reproduzierbaren Art und Weise für die etablierte Halbleitertechnologie zu nutzen.“ Eines der größten Hindernisse dafür war bisher die mangelnde Kontrolle, die man auf atomarem Level darüber hatte, wie Graphen mit seiner Umgebung interagiert. So war ein berechenbarer und damit gezielter Einsatz bisher kaum möglich. Ja, selbst die Wechselwirkung zwischen Graphen und dem Trägermaterial, auf das es aufgrund seiner geringen Dicke aufgebracht werden muss, war bisher nur teilweise verstanden. Das Projektteam um Pichler konnte genau das nun ändern.

Anzeige

Spannung mit Ladung
Dabei gelang es dem Team auch gleich einige überraschende neue Erkenntnisse zu gewinnen. „Wir konnten erstmals eine Korrelation zwischen einem Ladungstransfer – also der Verschiebung von Elektronen – und mechanischer Spannung von Graphen nachweisen“, schildert Pichler ein herausragendes Ergebnis des Projekts, das vor Kurzem zu Ende gegangen ist. „Eine Beobachtung, die durchaus große praktische Bedeutung haben kann, denn zukünftig könnten so interne Spannungen in Bauelementen auf Graphenbasis ganz ohne Kontakt gemessen werden.“ Und auch bei der zielgerichteten Kontrolle der Umgebung von Graphen konnte das Team signifikante Erfolge erzielen: Im Rahmen des Projekts wurde es erstmals möglich, die Grenzfläche zwischen Graphen und klassischen Halbleitern wie Germanium auf atomarer Ebene exakt zu kontrollieren. Nach Einschätzung vieler ist dies ein wichtiger Fortschritt, um die nanoelektronischen Bauelemente auf Graphenbasis für die Halbleitertechnologie nutzbar zu machen.

Erfolg mit Methode
Entscheidend für den Erfolg des Kooperationsprojekts war dabei, dass es gelang, zwei methodisch unterschiedliche Verfahren optimal miteinander zu verbinden und einzusetzen. So nutzte das Team um Pichler modernste Messverfahren der Spektroskopie, die mit sogenannten Ab-initio-Rechnungen eines Teams um Ludger Wirtz vom Institut für Elektronik, Mikroelektronik und Nanotechnologie der Universität Lille ergänzt wurden.

Graphen flächendeckend
Das zweite Erfolgsgeheimnis des Projekts war, dass es gelang, großflächiges Graphen herzustellen, das elektronisch isoliert vorlag. Dies war das optimale Ausgangsmaterial für die experimentelle Arbeit. „Wir haben dann die elektronische Struktur des Graphens ganz gezielt manipuliert,“ erläutert Pichler die Vorgehensweise in dem Projekt. „Dazu haben wir beispielsweise bestimmte Atome des Substrats, auf dem das Graphen lag, gegen Wasserstoff- oder Stickstoffatome ausgetauscht und den Einfluss dieser Substitution auf das Graphen gemessen.“ Ein anderer Ansatz, den das Team um Pichler wählte, war die sogenannte Interkalation. Bei dieser werden dünnste Schichten von Kalium, Lithium, Kalzium oder Barium zwischen das Graphen und das Trägermaterial eingeschoben und der Effekt auf das Graphen charakterisiert.

Publikationen
Atomically precise semiconductor – graphene and hBN interfaces by Ge intercalation, Verbitskiy, N.I., Fedorov, A.V., Profeta, G., Stroppa, A., Petaccia, L., Senkovskiy, B., Nefedov, A., Woell, C., Usachov, D. Yu., Vyalikh, D.V., Yashina, L.V., Eliseev, A .A., Pichler, T., Grueneis, A., Scientific Reports 5, Article number: 17700, 2015. doi:10.1038/srep17700.

Tunable Interface Properties between Pentacene and Graphene on the SIC Substrate, Liu, X., Grüneis, A., Haberer, D., Fedorov, A.V., Vilkov, O., Strupinski, W., Pichler, T., Journal of Physical Chemistry C, 117, 3969-3975 (2013). http://pubs.acs.org/doi/abs/10.1021/jp3103518.

Manifestation of Charged and Strained Graphene Layers in the Raman Response of Graphite Intercalation Compounds", Chacón-Torres, J. C., Wirtz, L. & Pichler, T., ACS Nano 7, 10, 9249-9259, (2013). http://pubs.acs.org/doi/full/10.1021/nn403885k.

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Integriertes Datenmanagement

Ihre im Labor erzeugten Daten können Sie sicher und strukturiert in einem System sammeln. NEC und labfolder bieten ein Mittel für die effiziente Verwaltung großer wissenschaftlicher Datensätze an.

mehr...
Anzeige

Organische Elektronik

Ein Halbleiter von der Heizplatte

Bei der Suche nach neuen, besseren Materialien für organische Halbleiter können Wissenschaftler der Universität Würzburg einen Erfolg vermelden. Ihre neueste Entwicklung hat sogar einen Weltrekord gebrochen: Sie leitet Strom besser als alle...

mehr...
Anzeige
Anzeige

Highlight der Woche

Integriertes Datenmanagement
Die Herausforderung bei der Digitalisierung des Laboralltags besteht im Wechsel von Papierlaborbüchern und Computerdateien zu einer Datenmanagementsoftware, die große Datensätze strukturiert innerhalb eines einzigen Systems sammelt.

Zum Highlight der Woche...