Elektrokatalyse
Aktive Strukturen von Eisen-Kobalt-Oxyhydroxiden untersucht
Ein Team um Dr. Prashanth W. Menezes (HZB/TU-Berlin) hat Kobalt-Eisen-Oxyhydroxide an der Synchrotronstrahlungsquelle BESSY II untersucht. Diese Materialklasse zählt gemäß Institutsangaben zu den besten Anoden-Katalysatoren, um elektrolytisch Wasser aufzuspalten und grünen Wasserstoff zu gewinnen. Insbesondere gelang es, die Oxidationsstufen von Eisen und Kobalt in den verschiedenen Konfigurationen zu bestimmen. Die Ergebnisse könnten zur wissensbasierten Entwicklung neuer hocheffizienter und kostengünstiger katalytisch aktiver Materialien beitragen.
Sobald wie möglich sollte man ohne fossile Brennstoffe auskommen, nicht nur im Energiesektor, sondern auch in der Industrie. Die aber ist auf Kohlenwasserstoffe und andere chemische Grundstoffe angewiesen, die bisher aus fossilen Ressourcen gewonnen werden. Solche Grundstoffe können im Prinzip mit Hilfe elektrokatalytisch aktiver Materialien und erneuerbar erzeugter Energie auch aus Wasser und Kohlendioxid hergestellt werden. Derzeit bestehen diese Katalysatormaterialien jedoch entweder aus teuren und seltenen Materialien oder sie sind nicht effizient genug.
Themen im Artikel
Ein Team um Dr. Prashanth W. Menezes (HZB/TU-Berlin) hat nun Einblicke in die Chemie eines der aktivsten Katalysatoren für die anodische Sauerstoffentwicklungsreaktion (OER) gewonnen. Dies ist eine Schlüsselreaktion bei der Wasserspaltung, die Elektronen für die Wasserstoffentwicklungsreaktion (HER) bereitstellt. Der Wasserstoff kann dann zum Beispiel zu Kohlenwasserstoffen weiter verarbeitet werden. Darüber hinaus spielt die OER auch bei der direkten elektrokatalytischen Reduktion von Kohlendioxid zu Alkoholen oder Kohlenwasserstoffen eine zentrale Rolle.
Eine vielversprechende Klasse von Elektrokatalysatoren für OER sind Kobalt-Eisen-Oxyhydroxide. Das Forschungsteam hat eine Reihe von helikalen LiFe1-xCox-Borophosphaten, die sich während der OER zu aktiven Kobalt-Eisen-Oxyhydroxiden umstrukturieren, an BESSY II analysiert. Mit verschiedenen In-situ-Spektroskopietechniken gelang es, die Oxidationsstufen der Elemente Eisen (Fe) und Kobalt (Co) in aktiven Strukturen zu bestimmen.
„Eisen spielt eine wichtige Rolle in OER-Katalysatoren auf Kobalt-Basis. Der genaue Grund dafür ist jedoch umstritten. Die meisten Studien gehen davon aus, dass Eisen in niedrigeren Oxidationsstufen (+III) Teil der aktiven Struktur ist. In unserem Fall konnten wir jedoch Eisen in Oxidationsstufen größer als 4 nachweisen, und außerdem zeigen, dass sich Bindungsabstände deutlich verkürzt haben. Damit können wir das katalytisch aktive Zentrum deutlich genauer verstehen", so Menezes.
Elektrokatalysatoren ermöglichen den Ladungstransfer vom Substrat (hier Wasser) zu den Elektroden, was meist mit einer Änderung der Oxidationsstufen der Übergangsmetalle einhergeht. Diese Veränderungen des Oxidationszustands sind jedoch manchmal zu schnell, um erkannt zu werden. Dies macht es schwierig, das Funktionsprinzip des Katalysators zu verstehen, insbesondere wenn er zwei potenziell aktive Elemente wie Eisen und Kobalt enthält. „Wir hoffen, dass die detaillierte elektronische und strukturelle Beschreibung wesentlich zur Verbesserung von OER-Katalysatoren beitragen kann", sagt Menezes.
Zu den Versuchen:
An den Forschungsarbeiten waren Wissenschaftler des CatLab am Helmholtz-Zentrum Berlin, der Technischen Universität Berlin und der Freien Universität Berlin beteiligt. Die Röntgenabsorptionsspektroskopie wurde an der Beamline KMC-3 bei BESSY II durchgeführt.
Originalpublikation:
Lukas Reith, Jan Niklas Hausmann, Stefan Mebs, Indranil Mondal, Holger Dau, Matthias Driess, Prashanth W. Menezes: In Situ Detection of Iron in Oxidation States ≥ IV in Cobalt-Iron Oxyhydroxide Reconstructed during Oxygen Evolution Reaction; Advanced Energy Materials (2023); DOI: 10.1002/aenm.202203886
Quelle: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH