Akkus bald leistungsfähiger?

Indium-Schicht sorgt für raschen Grenzflächen-Transport

Neuartige mit Indium beschichtete Lithium-Elektroden könnten Ausgangspunkt für leistungsfähigere, langlebigere Akkus sein. Erfolgsgeheimnis ist die gute Diffusion von Lithiumionen entlang der Grenzschicht.

Metallische Anoden verfügen über deutlich erhöhte Speicherkapazität gegenüber Graphitanoden (© Wiley-VCH).

Heutige Lithiumionen-Akkus enthalten meist Anoden aus Graphit, die Lithium einlagern, wenn der Akku geladen wird. Eine interessante Alternative könnten Akkus mit metallischen Anoden, z.B. Lithium-Metall, sein, versprechen sie doch eine deutlich höhere Speicherkapazität. Eine entscheidende Hürde für einen erfolgreichen Einsatz ist bislang die ungleichmäßige Abscheidung des Metalls während des Ladevorgangs, die zur Bildung von Verästelungen führt. Diese sogenannten Dendriten können nach längerem Gebrauch des Akkus so stark wachsen, dass sie den Akku kurzschließen. Außerdem kommt es zu unerwünschten Nebenreaktionen zwischen den reaktiven Metallelektroden und dem Elektrolyten, was die Lebensdauer des Akkus deutlich verringert.

Indium auf Lithium verhindert unerwünschte Reaktionen

Die Bildung einer stabilen passivierenden Schicht, die einen weiteren Kontakt unterbindet, wäre eine ideale Lösung – sie funktioniert jedoch nicht, denn während der ständigen Lade-Entlade-Zyklen expandiert und kontrahiert die Elektrode, die Schicht wird zerstört und das Metall dem Elektrolyten für weitere Reaktionen ausgesetzt. Ein anderer Ansatz sind künstliche Beschichtungen oder physikalische Barrieren.

Anzeige

Eine neuartigen Alternative stellten amerikanische Forscher jetzt vor: Mithilfe einer einfachen stromlosen Ionenaustausch-Chemie erzeugen sie Indium-Beschichtungen auf Lithium. Eintauchen in die Lösung eines speziellen Indium-Salzes genügt. Ein Teil des Indiums scheidet sich dann als Metall an der Oberfläche der Lithium-Elektrode ab und die Konzentration der Lithium-Ionen im Elektrolyten steigt entsprechend an.

Die Indium-Beschichtung verhindert unerwünschte Nebenreaktionen der Elektrode mit dem Elektrolyten, sorgt für eine gleichmäßigere Abscheidung von Lithium während der Aufladung und erhöht die Einlagerung in der Lithiumanode durch Legierungsreaktionen zwischen Lithium und Indium.

Die Indiumschicht ist gleichmäßig und im Betrieb selbstheilend, wenn geringe Mengen des Indiumsalzes dem Elektrolyten beigegeben werden. Während der Lade-Entlade-Zyklen bleibt sie intakt, ihre chemische Zusammensetzung bleibt unverändert und Nebenreaktionen werden vermieden. Auch Dendriten tauchen nicht mehr auf, die Oberfläche bleibt glatt und kompakt.

Stabil über mehr als 250 Zyklen

Anhand von Modellrechnungen konnten die Forscher zeigen, warum ihre Methode so erfolgreich funktioniert: Lithiumionen sind nur sehr locker an die Indiumbeschichtung gebunden. Sie bilden eine Legierung mit dem Indium, dadurch können sie sich sehr rasch entlang der Schicht bewegen, bevor sie diese durchqueren und sich auf der darunterliegenden Lithiumelektrode abscheiden. In kompletten Zellen mit kommerziellen Kathoden arbeiteten die neuartigen Indium-Lithium-Hybridelektroden über mehr als 250 Zyklen stabil bei einem etwa 90%igen Erhalt der Kapazität.

Literatur

Die Forscher haben ihre Ergebnisse in der Zeitschrift Angewandte Chemie publiziert. Hier der Link zum Originalbeitrag: https://doi.org/10.1002/ange.201707754.

Anzeige

Das könnte Sie auch interessieren

Anzeige

Batteriematerialien

Gründung von BASF Toda America

BASF, der weltweit größte Chemiezulieferer für die Automobilindustrie, hat die Vereinbarung zur Gründung von BASF Toda America (BTA) vollzogen. Als ein weiterer Schritt entlang der BASF-Wachstumsstrategie für ihr Geschäft mit Batteriematerialien...

mehr...
Anzeige

Effizienz und Leistung

Die neue Pioneer mit vielen Funktionen zum intelligenten Betrieb in Ihrem Labor. Mit antistatischem Stab zur Erdung. Weitere Informationen über die Waagen Pioneer PX

 

mehr...
Anzeige

Elektromobilität

Plug-in-Hybride besser als ihr Ruf

Plug-in-Hybride mit einer realen elektrischen Reichweite von etwa 60 km fahren genauso viel elektrisch wie reine Elektrofahrzeuge und haben damit ein genauso großes Kohlendioxid-Reduktionspotenzial. Zu diesem Ergebnis kommen Wissenschaftler des...

mehr...