Entschlüsselung des menschlichen Proteoms

Nur noch wenige weiße Flecken auf der Protein-Landkarte

Die Entschlüsselung des menschlichen Proteoms kommt voran: Unter Federführung der Technischen Universität München (TUM) haben Wissenschaftlerinnen und Wissenschaftler jetzt mehr als 18000 Proteine im menschlichen Körper kartiert - 92 % des gesamten Proteoms.

Die Arbeit liefert außerdem sensationelle Erkenntnisse über das Zusammenspiel von DNA, RNA und Proteinen als die molekularen Hauptakteure des Lebens. Seine Ergebnisse stellt das Team in der aktuellen Ausgabe von Nature vor.

Mit über 18000 Eiweißstoffen haben die TUM-Forscherinnen und -Forscher einen nahezu vollständigen Protein-Katalog des Menschen erstellt und in der frei verfügbaren Datenbank www.ProteomicsDB.org hinterlegt, die die TUM und das Softwareunternehmen SAP gemeinsam entwickelt haben. Sie enthält zum Beispiel Daten zur Art, Verteilung und Menge von Proteinen in verschiedenen Zell- und Gewebetypen sowie Körperflüssigkeiten.

Die Untersuchungen zeigen, dass einerseits etwa 10000 Proteine in vielen Zellen und Organen vorkommen, um deren alltägliches Leben zu organisieren. Andererseits ist das Protein-Muster eines jeden Organs einzigartig und essentiell für seine Funktion. Technisch möglich wurde das Projekt durch die Kombination zweier Hochleistungstechnologien - der Massenspektrometrie und des In-Memory Computing.

Anzeige

Vom Bauplan zum Protein: RNA gibt Stückzahl vor
Wie wird aus einem Gen ein Protein? Dazu wird der DNA-Bauplan in mehreren Schritten als RNA-Kopie ausgelesen. Diese Boten-RNA (mRNA) dient dann als Vorlage für die Herstellung eines Proteins. In der Studie haben die Wissenschaftler jetzt gezeigt, dass jede mRNA eine definierte Anzahl an Protein-Kopien vorgibt.

Dieser "Kopierschlüssel" ist für jedes Protein spezifisch. "Offensichtlich kennt jedes mRNA-Molekül die Stückzahl für sein Protein - und weiß, ob davon 10, 100 oder 1000 Ausgaben zu produzieren sind", erläutert Prof. Bernhard Küster, Leiter des TUM-Lehrstuhls für Proteomik und Bioanalytik. "Da wir dieses Verhältnis nun für sehr viele Proteine kennen, können wir in praktisch jedem Gewebe von der mRNA auf die Proteinmenge schließen - und umgekehrt."

Neue Gene - alte Gene
Zu ihrer großen Überraschung fanden die Forscher hunderte Proteinfragmente, die von DNA-Bereichen außerhalb heute bekannter Gene produziert werden. Diese neuen Proteine haben womöglich neuartige biologische Eigenschaften und Funktionen, deren Bedeutung aber noch unbekannt ist.

Demgegenüber konnten die Wissenschaftler bislang etwa 2000 Proteine, die laut Genkarte existieren sollten, noch nicht auffinden. Eine Reihe dieser Proteine sind womöglich nur in der Embryonalentwicklung vorhanden. Offenbar sind viele bekannte Gene aber auch funktionslos geworden. Das trifft nach jetziger Erkenntnis vor allem auf Geruchsrezeptoren zu - ein Hinweis, dass für den modernen Menschen der Geruchssinn nicht mehr überlebenswichtig ist.

"Vielleicht sehen wir der Evolution gerade bei der Arbeit zu", sagt Küster "Unser Organismus deaktiviert überflüssige Gene - und testet an anderer Stelle neue Gen-Prototypen." Daher lässt sich vielleicht nie exakt sagen, wie viele menschliche Proteine es tatsächlich gibt.

Proteinmuster bestimmen die Wirksamkeit von Medikamenten
Schon frühere Studien zeigten, dass bestimmte Protein-Muster die Wirksamkeit von Medikamenten vorhersagen können. In der aktuellen Arbeit nahmen die Wissenschaftler 24 Krebsmedikamente ins Visier, deren Wirksamkeit auf 35 Krebszelllinien klar mit deren Protein-Profilen in Zusammenhang stand.

"Damit", so Küster, "öffnet sich die Tür für eine individualisierte Behandlung von Patienten einen Spalt weiter. Mit Kenntnis des Protein-Profils eines Tumors könnten Medikamente zukünftig zielgerichteter eingesetzt werden. Die medizinische Forschung kann darüber hinaus neue Wirkstoffkombinationen erproben und die Therapie noch individueller auf die Bedürfnisse der Patienten ausrichten."

Publikation:
Mathias Wilhelm, Judith Schlegl, Hannes Hahne, Amin Moghaddas Gholami, Marcus Lieberenz, Mikhail M. Savitski, Emanuel Ziegler, Lars Butzmann, Siegfried Gessulat, Harald Marx, Toby Mathieson, Simone Lemeer, Karsten Schnatbaum, Ulf Reimer, Holger Wenschuh, Martin Mollenhauer, Julia Slotta-Huspenina, Joos-Hendrik Boese, Marcus Bantscheff, Anja Gerstmair, Franz Faerber & Bernhard Kuster, Mass-spectrometry-based draft of the human proteome; Nature, DOI: 10.1038/nature13319.

Kontakt:
Technische Universität München
Lehrstuhl für Proteomik und Bioanalytik
http://www.wzw.tum.de/proteomics

Prof. Dr. Bernhard Küster
kuster@tum.de

Dr. Hannes Hahne
hannes.hahne@tum.de

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Ribosomale Proteine

Forscher finden „Krebssignatur“

Forscher am Biozentrum der Universität Basel haben die Herstellung ribosomaler Proteine in unterschiedlichen Geweben untersucht und entdeckt, dass verschiedene Krebsarten eine spezifische Signatur aufweisen. Wie sie in „Genome Biology“ berichten,...

mehr...