Krebsbekämpfung„Wächter“ und „Hausmeister“ des Genoms kooperieren
Biologen und Chemiker aus Konstanz, Ulm und Karlsruhe konnten jetzt einen molekularen Mechanismus der Zelle aufklären, der in Zusammenhang mit Krebsentstehung sowie -bekämpfung steht. Eine besondere Rolle spielt darin die Interaktion des krebsbekämpfenden Proteins p53 mit dem Enzym PARP-1.
Im Laufe eines Tages entstehen in jeder Zelle des menschlichen Körpers durch Stoffwechselvorgänge, Entzündungsreaktionen, Umweltgifte, Strahlung, etc. Tausende von Schäden in der Erbsubstanz (DNA). Falls diese nicht rechtzeitig von der Zelle „repariert“ werden, können sie zu Mutationen und zur Krebsentstehung führen. Besteht die Gefahr, dass sich eine Körperzelle in eine Krebszelle verwandelt, wird normalerweise das Protein p53 aktiviert. p53 setzt daraufhin mehrere molekulare Prozesse in Gang, die die Zellteilung anhalten („Zellzyklus-Arrest“) und die Genauigkeit der DNA-Reparatur verbessern. „Hierdurch gewinnt die Zelle Zeit, um die gefährlichen DNA-Schäden sauber zu reparieren oder, falls es zu viele sind, den ‚programmierten Zelltod‘ (Apoptose) einzuleiten“, schildert der Konstanzer Toxikologe und Biochemiker PD Dr. Aswin Mangerich, der das Projekt an der Professur für Molekulare Toxikologie von Prof. Dr. Alexander Bürkle an der Universität Konstanz leitet. „Auf diese Weise wirkt p53 der Krebsentstehung entgegen und wird daher auch als ‚Wächter des Genoms‘ bezeichnet“, führt Mangerich weiter aus.

Die biomedizinische Relevanz des Proteins p53 wird darin deutlich, dass in der Hälfte aller menschlichen Tumorarten das p53-Gen mutiert (irreversibel verändert) ist, wodurch seine krebsbekämpfende Funktion unterdrückt wird. Durch diese Mutationen erhalten Krebszellen einen Überlebensvorteil, da die wichtigen Abwehrmechanismen der DNA-Reparatur und des programmierten Zelltods ausgeschaltet werden.
Hausmeister-Enzym koordiniert Reparatur
Die Konstanzer Wissenschaftler ermittelten nun den molekularen Mechanismus, wie die biochemischen und zellulären Funktionen von p53 in Zusammenspiel mit dem Enzym PARP-1 gesteuert werden. „PARP-1 hilft dabei, DNA-Reparaturvorgänge in der Zelle zu koordinieren, und wird daher auch als ‚Hausmeister des Genoms‘ bezeichnet“, beschreibt Aswin Mangerich dessen grundlegende Funktion. Dr. Arthur Fischbach, der an dem Projekt im Rahmen seiner inzwischen abgeschlossenen Doktorarbeit maßgeblich beteiligt war, berichtet weiter: „Das Enzym PARP-1 erkennt DNA-Schäden, wird dadurch aktiviert und bildet das Biopolymer Poly(ADP-Ribose) als eine der ersten Reaktionen der Zelle. Das Biopolymer bewirkt wiederum über eine nicht-kovalente Ankopplung anschließend eine kovalente Ankopplung an p53. Diese Modifikation hat weitreichende Auswirkungen für die Regulierung der biochemischen und zellulären Funktionen von p53.“ Der „Wächter“ und der „Hausmeister“ des Genoms tun sich somit zusammen, wobei es der Hausmeister ist, der bei einer Gefährdung der Zelle den Wächter ruft und anweist.
Die Forschung wurde finanziell unterstützt von der Deutschen Forschungsgemeinschaft (DFG), vom Sonderforschungsbereich SFB 969 „Chemical and Biological Principles of Cellular Proteostasis“ sowie von der Graduiertenschule Chemische Biologie und dem Zukunftskolleg der Universität Konstanz, die im Rahmen der Exzellenzinitiative des Bundes und der Länder gefördert werden.
Originalpublikation
Fischbach, A., A. Kruger, S. Hampp, G. Assmann, L. Rank, M. Hufnagel, M. T. Stockl, J. M. F. Fischer, S. Veith, P. Rossatti, M. Ganz, E. Ferrando-May, A. Hartwig, K. Hauser, L. Wiesmuller, A. Burkle and A. Mangerich. "The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1." Nucleic Acids Research, Volume 46, Issue 2, 25 January 2018, Pages 804–822, https://doi.org/10.1093/nar/gkx1205
Weitere Beiträge zum Thema
KrebsentstehungChronischer Zelltod begünstigt Leberkrebs
Forschende aus der Schweiz und aus Deutschland haben einen zentralen Mechanismus zur Entstehung von Leberkrebs entdeckt. Das Enzym Caspase 8 nimmt bei diesem Prozess eine wichtige Doppelfunktion ein.
…mehr

ApoptoseNanopaket zerstört hypoxische Krebszellen
Amerikanische Wissenschaftler haben ein hybrides Nanomaterial entwickelt, das durch Hitzeaktivierung in Tumorzellen eine Vorstufe für freie Radikale freisetzt.
…mehr

ApoptoseRegulation des Zelltods im Darmepithel
Der Darm ist ein wichtiges Organ mit einer riesigen Oberfläche, die beim Menschen nahezu der Fläche eines Tennisplatzes entspricht. Die Balance im Darm zwischen „Außen“ und „Innen“, zwischen der Mikroflora im Darm und dem Körper ist extrem wichtig, aber auch heikel.
…mehr

ApoptoseProteininteraktionen analysiert
Das Protein Fas kann den kontrollierten Tod von Zellen (Apoptose) entweder verhindern oder begünstigen – je nachdem, in welcher Form es vorkommt. Forscher vom Helmholtz Zentrum München und der Technischen Universität München konnten gemeinsam mit internationalen Kollegen klären, wie diese Entscheidung zustande kommt.
…mehr

FerroptoseWie Zellen den Eisentod sterben
Die Ferroptose bezeichnet eine vor kurzem entdeckte Form des Zelltods, die in weiten Teilen noch nicht verstanden ist. Wissenschaftler am Helmholtz Zentrum München stellen nun ein zentrales Enzym vor, welches das tödliche Signal erst möglich macht.
…mehr