Krebsbekämpfung

„Wächter“ und „Hausmeister“ des Genoms kooperieren

Biologen und Chemiker aus Konstanz, Ulm und Karlsruhe konnten jetzt einen molekularen Mechanismus der Zelle aufklären, der in Zusammenhang mit Krebsentstehung sowie -bekämpfung steht. Eine besondere Rolle spielt darin die Interaktion des krebsbekämpfenden Proteins p53 mit dem Enzym PARP-1.

Das Enzym PARP-1 bildet nach Aktivierung das Biopolymer PAR (Poly(ADP-Ribose)). PAR vermittelt daraufhin die Bindung an das Protein p53 im Bereich der sogenannten C-terminalen Domäne (CTD). p53 wird anschließend von PARP-1 mit dem PAR-Biopolymer modifiziert. Wie im unteren Teil der Abb. dargestellt, haben diese molekularen Vorgänge weitreichende Auswirkungen auf eine ganze Reihe biochemischer und zellulärer Funktionen, die eine wichtige Rolle in der Krebsbiologie spielen. Bild: Aswin Mangerich, Universität Konstanz.

Im Laufe eines Tages entstehen in jeder Zelle des menschlichen Körpers durch Stoffwechselvorgänge, Entzündungsreaktionen, Umweltgifte, Strahlung, etc. Tausende von Schäden in der Erbsubstanz (DNA). Falls diese nicht rechtzeitig von der Zelle „repariert“ werden, können sie zu Mutationen und zur Krebsentstehung führen. Besteht die Gefahr, dass sich eine Körperzelle in eine Krebszelle verwandelt, wird normalerweise das Protein p53 aktiviert. p53 setzt daraufhin mehrere molekulare Prozesse in Gang, die die Zellteilung anhalten („Zellzyklus-Arrest“) und die Genauigkeit der DNA-Reparatur verbessern. „Hierdurch gewinnt die Zelle Zeit, um die gefährlichen DNA-Schäden sauber zu reparieren oder, falls es zu viele sind, den ‚programmierten Zelltod‘ (Apoptose) einzuleiten“, schildert der Konstanzer Toxikologe und Biochemiker PD Dr. Aswin Mangerich, der das Projekt an der Professur für Molekulare Toxikologie von Prof. Dr. Alexander Bürkle an der Universität Konstanz leitet. „Auf diese Weise wirkt p53 der Krebsentstehung entgegen und wird daher auch als ‚Wächter des Genoms‘ bezeichnet“, führt Mangerich weiter aus.

Anzeige

Die biomedizinische Relevanz des Proteins p53 wird darin deutlich, dass in der Hälfte aller menschlichen Tumorarten das p53-Gen mutiert (irreversibel verändert) ist, wodurch seine krebsbekämpfende Funktion unterdrückt wird. Durch diese Mutationen erhalten Krebszellen einen Überlebensvorteil, da die wichtigen Abwehrmechanismen der DNA-Reparatur und des programmierten Zelltods ausgeschaltet werden.

Hausmeister-Enzym koordiniert Reparatur

Die Konstanzer Wissenschaftler ermittelten nun den molekularen Mechanismus, wie die biochemischen und zellulären Funktionen von p53 in Zusammenspiel mit dem Enzym PARP-1 gesteuert werden. „PARP-1 hilft dabei, DNA-Reparaturvorgänge in der Zelle zu koordinieren, und wird daher auch als ‚Hausmeister des Genoms‘ bezeichnet“, beschreibt Aswin Mangerich dessen grundlegende Funktion. Dr. Arthur Fischbach, der an dem Projekt im Rahmen seiner inzwischen abgeschlossenen Doktorarbeit maßgeblich beteiligt war, berichtet weiter: „Das Enzym PARP-1 erkennt DNA-Schäden, wird dadurch aktiviert und bildet das Biopolymer Poly(ADP-Ribose) als eine der ersten Reaktionen der Zelle. Das Biopolymer bewirkt wiederum über eine nicht-kovalente Ankopplung anschließend eine kovalente Ankopplung an p53. Diese Modifikation hat weitreichende Auswirkungen für die Regulierung der biochemischen und zellulären Funktionen von p53.“ Der „Wächter“ und der „Hausmeister“ des Genoms tun sich somit zusammen, wobei es der Hausmeister ist, der bei einer Gefährdung der Zelle den Wächter ruft und anweist.

Die Forschung wurde finanziell unterstützt von der Deutschen Forschungsgemeinschaft (DFG), vom Sonderforschungsbereich SFB 969 „Chemical and Biological Principles of Cellular Proteostasis“ sowie von der Graduiertenschule Chemische Biologie und dem Zukunftskolleg der Universität Konstanz, die im Rahmen der Exzellenzinitiative des Bundes und der Länder gefördert werden.

Originalpublikation
Fischbach, A., A. Kruger, S. Hampp, G. Assmann, L. Rank, M. Hufnagel, M. T. Stockl, J. M. F. Fischer, S. Veith, P. Rossatti, M. Ganz, E. Ferrando-May, A. Hartwig, K. Hauser, L. Wiesmuller, A. Burkle and A. Mangerich. "The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1." Nucleic Acids Research, Volume 46, Issue 2, 25 January 2018, Pages 804–822, https://doi.org/10.1093/nar/gkx1205

 

Anzeige

Das könnte Sie auch interessieren

Anzeige

Apoptose

Regulation des Zelltods im Darmepithel

Der Darm ist ein wichtiges Organ mit einer riesigen Oberfläche, die beim Menschen nahezu der Fläche eines Tennisplatzes entspricht. Die Balance im Darm zwischen „Außen“ und „Innen“, zwischen der Mikroflora im Darm und dem Körper ist extrem wichtig,...

mehr...
Anzeige

Schnellster Feuchtebestimmer am Markt für Feuchte-/Feststoffgehalt

Der Feuchtebestimmer SMART 6 analysiert den Feuchtegehalt jeder Probe in nur 2 min. Ob nass oder trocken, Feststoff, Pulver oder Suspension – egal! Alle Probenarten werden dank der Kombination Mikrowelle/Halogen schnell und präzise bis zur Gewichtskonstanz getrocknet. Dank der Temperaturkontrolle sind die Messwerte vergleichbar zu den Standardmethoden.

mehr...

Apoptose

Proteininteraktionen analysiert

Das Protein Fas kann den kontrollierten Tod von Zellen (Apoptose) entweder verhindern oder begünstigen – je nachdem, in welcher Form es vorkommt. Forscher vom Helmholtz Zentrum München und der Technischen Universität München konnten gemeinsam mit...

mehr...
Anzeige

Ferroptose

Wie Zellen den Eisentod sterben

Die Ferroptose bezeichnet eine vor kurzem entdeckte Form des Zelltods, die in weiten Teilen noch nicht verstanden ist. Wissenschaftler am Helmholtz Zentrum München stellen nun ein zentrales Enzym vor, welches das tödliche Signal erst möglich macht.

mehr...

Pyroptose

Gasdermin D treibt Immunzellen in den Suizid

Für manch einen Krankheitserreger bedeutet Angriff die beste Verteidigung – sie nisten sich direkt in die Abwehrzellen ein. Wenn sie jedoch in ihrem Versteck aufgespürt werden, bringt sich die infizierte Zelle selber um und setzt so die Erreger...

mehr...
Anzeige

Schnelle automatisierte Lösemittel Extraktion

Das EDGE Extraktionssystem ist ein sequentielles System für die schnelle automatisierte Lösemittel-Extraktion. Damit werden unterschiedliche Proben schnell in nur 5 min. extrahiert. Die Extraktionen im EDGE werden unter Druck und bei erhöhten Temperaturen durchgeführt, was zu einer starken Beschleunigung der Reaktionskinetik führt.

Zum Highlight der Woche...