Selbstorganisation von Nanoobjekten

Organellen-Cluster durch Nachahmung der Natur erzeugt

Forschern der Universität Basel ist es gelungen, sphärische Kompartimente in Cluster zu gliedern. Dabei diente die Bildung komplexer Strukturen durch Organelle als Vorbild. Als Bindeglied zwischen den synthetischen Kompartimenten dienten DNA-Brücken. Dies ist ein wichtiger Schritt in Richtung der Verwirklichung sogenannter molekularer Fabriken.

Zwei Polymersomen verbinden sich durch DANN-Hybridisierung: Die einzelnen DNA-Stränge an der Oberfläche der Kompartimente schließen sich zusammen und bilden so eine äußerst stabile DNA-Brücke. (© Universität Basel)

Innerhalb der Zelle existieren spezielle Kompartimente, die als Organelle bezeichnet werden, beispielsweise der Zellkern, die Mitochondrien, Peroxisomen und Vakuolen. Diese sind jeweils für bestimmte Zellfunktionen zuständig. Nahezu alle ausgeklügelten biologischen Zellfunktionen werden mittels Selbstorganisation realisiert. Dabei ordnen sich Moleküle ohne Anleitung von außen auf eine bestimmte Art und Weise an, die auf ihren jeweiligen Konformationen und Eigenschaften basiert.

Die Nutzung der Selbstorganisation von Nanoobjekten zu komplexen Strukturen ist eine wesentliche Strategie, um neue Materialien mit verbesserten Eigenschaften oder Funktionen in Bereichen wie Chemie, Elektronik und Technik herzustellen. So wurde diese Strategie beispielsweise bereits eingesetzt, um Geflechte aus anorganischen Feststoff-Nanopartikeln zu erzeugen. Bisher konnten diese Geflechte jedoch nicht ausgereifte Strukturen imitieren, die innerhalb der Zellen biologische Funktionen haben und somit für einen Einsatz in Medizin oder Biologie in Betracht kommen.

Anzeige

DNA-Brücken verleihen Stabilität
Die gemeinsame Arbeit der Forschergruppen unter der Leitung von Professorin Cornelia Palivan und Professor Wolfgang Meier bietet nun einen neuen Ansatz für die Selbstorganisation von künstlichen Organellen zu Clustern, der die Verbindung zwischen ihren natürlichen Gegenstücken imitiert. Durch die Nutzung einzelner DNA-Stränge zur Verbindung der sphärischen Kompartimente gelang es den Forschern, Cluster gemäß einer spezifischen Architektur und mit kontrollierten Eigenschaften zu erzeugen. „Wir haben gespannt beobachtet, dass die einzelnen DNA-Stränge an der Oberfläche der sphärischen Kompartimente sich zusammengeschlossen und eine Brücke mit den DNA-Strängen des nächsten Kompartiments gebildet haben“, so Palivan. Bei dieser DNA-Brücke handelt es sich um eine äußerst stabile Verbindung.

Diese von der Natur inspirierte Strategie geht über die eigentlichen Ansätze der Selbstorganisation hinaus, da sie zudem die Integration von verschiedenen Anforderungen ermöglicht, beispielsweise die Feinabstimmung des Abstands zwischen den einzelnen Kompartimenten oder verschiedene räumliche Strukturen „on demand“. Als Kompartimente nutzten die Forscher Polymersomen mit einer synthetischen Membran, die im Gegensatz zu Liposomen den großen Vorteil bietet, dass sie äußerst stabil ist und die Verschmelzung einzelner Kompartimente innerhalb der Zelle kontrolliert.

Ein weiterer einzigartiger Vorteil dieser Strategie zur Bildung von Nanoclustern ist die Tatsache, dass die Kompartimente mit Reaktionspartnern wie Enzymen, Proteinen oder Katalysatoren bestückt werden können. Dies liefert die Grundlage für die künftige Entwicklung künstlicher Organelle, die als molekulare Fabriken dienen. Diese Forschungsarbeit wurde im Rahmen des Nationalen Forschungsschwerpunkts (NFS) Molecular Systems Engineering durchgeführt.

Originalartikel:
Juan Liu, Viktoriia Postupalenko, Samuel Lörcher, Dalin Wu, Mohamed Chami, Wolfgang Meier, Cornelia G. Palivan: DNA-mediated self-organization of polymeric nanocompartments leads to interconnected artificial organelles. Nano Letters (2016), doi: 10.1021/nanolett.6b03430.

Weitere Auskünfte:
Prof. Dr. Cornelia G. Palivan
Universität Basel, Departement Chemie
E-Mail: Cornelia.Palivan@unibas.ch.

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige