Labo Online - Analytic, Labortechnik, Life Sciences
Home> Wirtschaft + Wissenschaft> Archiv>

Würzburger Wissenschaftler haben ein Modell präsentiert, das zeigt, wie die G-Protein-gekoppelte Signalkette im Zellinneren abläuft.

PharmakologieBestätigt: G-Protein-gekoppelte Rezeptoren auch im Zellinneren aktiv

G-Protein-gekoppelten Rezeptoren (GPCRs) werden zu Hunderten im menschlichen Erbgut kodiert. Sie bilden die größte Gruppe von Rezeptoren, über die Hormone und Neurotransmitter auf Zellen einwirken. Dementsprechend groß ist ihre Bedeutung als Angriffsstelle für therapeutisch wirksame Substanzen: Rund die Hälfte aller verschreibungspflichtigen Medikamente wirken auf diese Rezeptoren ein – und helfen so bei der Behandlung weitverbreiteter Krankheiten, wie etwa Bluthochdruck, Asthma oder Morbus Parkinson.

sep
sep
sep
sep
Grafik zum Modell der Signalkette in der Zelle

Lange Zeit war die Wissenschaft davon überzeugt, dass GPCRs auf der Zelloberfläche sitzen und nur von dort aus über verschiedene Signalketten Einfluss auf die Aktivität der Zelle nehmen. Diese Vorstellung ist in jüngster Zeit durch eine Reihe von Studien ins Wanken geraten. Diese Studien deuten darauf hin, dass GPCRs auch im Zellinneren aktiv sind. Eine Bestätigung für diese Theorie haben jetzt Forscher um Professor Davide Calebiro vom Institut für Pharmakologie und Toxikologie und vom Bio-Imaging Center der Universität Würzburg geliefert. Die Ergebnisse ihrer Arbeit stellen sie in der aktuellen Ausgabe der Fachzeitschrift Nature Communications vor.

Anzeige

Vereinfacht dargestellt, sitzen G-Protein-gekoppelten Rezeptoren in der Zellwand und warten darauf, dass ein Hormon oder Neurotransmitter an sie bindet und sie dadurch aktiviert. Das Signal wird in die Zelle weitergeleitet, vor allem durch die Produktion eines intrazellulären Botenstoffes wie des zyklischen Adenosinmonophosphats (kurz cAMP). Dieser Botenstoff wiederum ist im Zellinneren an der Regulation einer Vielzahl von Zellfunktionen beteiligt, wie beispielsweise der Gentranskription und der Zellteilung.

Rezeptoren auch im Zellinneren aktiv
„Der erste Hinweis, dass GPCRs auch im Zellinneren die Produktion von cAMP anstoßen, stammte aus zwei Studien an typischen Protein-Hormon-Rezeptoren“, sagt Davide Calebiro. Für eine dieser Studien waren er und sein Team verantwortlich; sie hatten einen Rezeptor untersucht, der für die Produktion von Schilddrüsenhormonen wichtig ist – den sogenannten Thyreoidea-stimulierenden-Hormon(TSH)-Rezeptor. „Die Studien zeigten unabhängig voneinander, dass GPCRs dazu in der Lage sind, im Zellinneren eine zweite Phase der cAMP-Produktion dauerhaft in Gang zu setzen“, so Calebiro. Tatsächlich sei ihre Wirkung dort „biologisch relevant“. Der genaue Mechanismus sei allerdings weitestgehend unklar gewesen.

Mit ihrer neuesten Studie ist es den Forschern der Universität Würzburg gemeinsam mit Kollegen der University of Birmingham gelungen, Details der Vorgänge im Zellinneren zu entschlüsseln. Als wichtigsten Hauptakteur identifizierten sie dabei das trans-Golgi-Netzwerk (TGN) – ein mit dem Golgi-Apparat verbundenes Netzwerk von Kanälen und Zisternen. In diesem Netzwerk verteilt die Zelle modifizierte Proteine auf unterschiedliche Transportvesikel, mit denen diese anschließend an ihren Bestimmungsorten gebracht werden. „Unsere neue Daten zeigen, dass das TGN eine zentrale Schaltstelle für die Aktivität von G-Protein-gekoppelten Rezeptoren ist“, sagt Davide Calebiro. Sie zeigen dort einen neuen Mechanismus auf, der die zellulären Effekte der GPCR-Signale im Zellinneren erklären kann, so der Wissenschaftler.

Die Abläufe im Zellinneren
An Zellen der Schilddrüse läuft dieser Mechanismus demnach so ab: Nach Bindung von TSH werden TSH-Rezeptoren ins Zellinnere aufgenommen und zum trans-Golgi-Netzwerk transportiert. Dort aktivieren die Rezeptoren die Produktion von cAMP und ein weiteres Enzym – die Proteinkinase A. Dies geschieht alles in direkter Nachbarschaft zum Zellkern, in dem die genetische Information der Zelle liegt, und nimmt somit Einfluss auf den Ableseprozess der DNA (Gentranskription).

„Diese Studie bedeutet einen signifikanten Fortschritt“, ist sich Davide Calebiro sicher, da sie ein neues Modell präsentiert, das zeigt, wie die G-Protein-gekoppelte Signalkette im Zellinneren abläuft. Diese neuen Ergebnisse könnten „zur Entwicklung neuer Medikamente für eine Vielzahl von menschlichen Krankheiten führen, die spezifisch auf die Aufnahme von Rezeptoren oder auf Ihre Funktion im TGN wirken“.

Die Studie wurde unterstützt von der Deutschen Forschungsgemeinschaft DFG (Grant CA 1014/1-1 und SFB/Transregio 166–Projekt C1, Davide Calebiro).

Publikation:
Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription. Amod Godbole, Sandra Lyga, Martin J. Lohse & Davide Calebiro. Nature Communications, DOI: 10.1038/s41467-017-00357-2

Anzeige
Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge zum Thema

Mikroskopische Aufnahme von Stammzellen über die Zeit

Neue Einsichten in der StammzellforschungGeringe Teilungshäufigkeit von Stammzellen im Gehirn

Zum ersten Mal konnten Wissenschaftler über Monate beobachten, wie sich Stammzellen im erwachsenen Gehirn teilen und neue Nervenzellen heranwachsen. Ihre Studie liefert damit neue Einsichten in der Stammzellforschung.

…mehr
Elektronenmikroskop-Aufnahme von Gas-Vesikeln

Krankheitsprozesse visualisierenNeuartiges Kontrastmittel verspricht tiefe Einblicke in das Schicksal von Zellen

Das Schicksal bestimmter Zellen in tiefliegenden Geweben mit sehr geringen Mengen eines von außen anschaltbaren Kontrastmittels zu verfolgen – das war bislang kaum vorstellbar. Doch ein neues Kontrastmittel auf Basis von Gas-Vesikeln bringt dieses Ziel nun in greifbare Nähe.

…mehr
Bakteriophagen gegen multiresistente Keime: Werkbank für das Virendesign

Bakteriophagen gegen multiresistente KeimeWerkbank für das Virendesign

ETH-Forscher haben eine Technologieplattform entwickelt, mit der sie Bakteriophagen gezielt verändern und maßschneidern können. Dank dieser Technik rücken Phagen-Therapien gegen gefährliche Erreger in Griffweite.

…mehr
Stammzellforschung: Neues Mausmodell lässt Stammzellen grün leuchten

StammzellforschungNeues Mausmodell lässt Stammzellen grün leuchten

Wissenschaftler der Universität Bonn haben eine Möglichkeit gefunden, Stammzellen gezielt zu markieren. Dadurch wird es möglich, ihr Verteilungsmuster und ihre Funktion in lebenden Organismen detailliert zu analysieren. 

…mehr
Das Bakterium C. metallidurans bildet winzig kleine Gold-Nuggets. (Bild: American Society for Microbiology)

Neue Erkenntnisse zum bio-geochemischen...Gold-Esel: Bakterien verdauen giftige Metalle und bilden dabei Gold

Für die meisten Lebewesen sind größere Mengen von Schwermetallen, wie Kupfer oder Gold, giftig. Nicht für das Bakterium Cupriavidus metallidurans: Es hat einen Weg gefunden, aus einem Schwermetall-Gemisch wertvolle Spurenelemente zu beziehen, ohne sich dabei selbst zu vergiften. 

…mehr
Anzeige

Mediadaten 2018

LABO Einkaufsführer

Produktkataloge bei LABO

Produktkataloge zum Blättern


Hier finden Sie aktuelle Blätter-Kataloge von Herstellern aus der Branche. Einfach durchblättern oder gezielt nach Stichwort suchen!

Anzeige

LABO Web-Guide 2016 als E-Paper

LABO Web-Guide 2016

Web-Guide 2016


- Stichwortregister

- Firmenscreenshots

-Interessante Webadressen aus dem Labor

Anzeige

Neue Stellenanzeigen

Jetzt den LABO Newsletter abonnieren

LABO Newsletter abonnieren

Der kostenlose LABO Newsletter informiert Sie wöchentlich über neue Produkte, Lösungen, Technologietrends und Innovationen aus der Branche sowie Unternehmensnachrichten und Personalmeldungen.

LABO bei Facebook und Twitter