Diese Seite empfehlen:
An (E-Mail Adresse des Empfängers)
Ihr Name (Optional)
Von (Ihre E-Mail Adresse)
Nachricht (Optional)
Datenschutz-Hinweis: Die Mailadressen werden von uns weder gespeichert noch an Dritte weitergegeben. Sie werden ausschließlich zu Übertragungszwecken verwendet.

Zwischen Haftreibung und Adhäsion

Kontaktwinkel elektrisch veränderbar

Physiker haben an der Universität Zürich ein System entwickelt, mit dem sie Adhäsion und Haftreibung eines Wassertropfens auf einer festen Oberfläche elektrisch hin und her schalten können. Zurückführen lässt sich dieser Effekt auf die Veränderung der Oberflächenbeschaffenheit im Nanometerbereich.

Bienenwabenförmiges Nanomesh: Bornitrid-Struktur aus Stickstoff (grün) und Bor (orange) auf Rhodium (grau); Wabenabstand 3,2 nm (Bild: Marcella Iannuzzi, UZH & Ari Seitsonen, ENS Paris)

Wie kommt es, dass sich ein Gecko kopfüber an einer Decke fortbewegen kann? Zwei Mechanismen sind dafür verantwortlich: Die Adhäsion durch Milliarden feinster Härchen an seinen Füssen lässt ihn an Decken und Wänden kleben. Sobald sich der Gecko bewegt, verlässt er sich auf die Haftreibung. Die Änderung von Adhäsion und Haftreibung auf der makroskopischen Ebene äußert sich auf der Nanometerskala durch die Änderung der Kräfte, die zwischen Atomen und Molekülen wirken.

Elektrisch schaltbares Nanomesh

Einem internationalen Forscherteam unter der Leitung von Thomas Greber vom Physik-Institut der Universität Zürich ist es gelungen, die Art und Weise, wie ein Flüssigkeitstropfen auf einer festen Oberfläche haftet, hin und her zu schalten. Dies geschieht durch die Veränderung der elektrischen Spannung, die an einen Wassertropfen angelegt wird. Die Oberfläche, auf welcher der Tropfen liegt, besteht aus einem Material genannt Nanomesh. Dabei handelt es sich um eine einzelne Bornitrid-Schicht auf metallischem Rhodium. Die Struktur hat die Form einer Bienenwabe mit einer Wabentiefe von 0,1 Nanometern und einem Wabenabstand von 3,2 Nanometern.

Anzeige

Makroskopisch äußert sich die Änderung der elektrischen Spannung in der Änderung des Kontaktwinkels zwischen Tropfen und Nanomesh-Oberfläche. Mit Kontakt- oder Benetzungswinkel bezeichnet man den Winkel, den ein Flüssigkeitstropfen zur Oberfläche eines Feststoffs bildet. Messen lässt sich dieser Winkel mit Hilfe von Fotografien im Gegenlicht.

Auf der Nanometerskala geschieht durch die Spannungsänderung Folgendes: Die Stickstoffbindungen zum Rhodium werden durch Wasserstoff-Rhodium-Bindungen ersetzt, wodurch sich die Nanomesh-Struktur auflöst. Wie stark der Stickstoff des Bornitrids an die Rhodium-Oberfläche bindet, ist abhängig von dessen Abstand und Richtung zum nächsten Rhodium-Atom. Und dies bestimmt die Wabentiefe der Bornitrid-Schicht. Ändert sich die Spannung, lagert sich Wasserstoff zwischen Bornitrid- und Rhodium-Schicht, was dazu führt, dass die wabenförmige Bornitrid-Struktur flach wird. Mittels Tunnelmikroskopie lässt sich dieser nanoskopische Effekt – die Veränderung der Oberflächenbeschaffenheit des Nanomesh – in der Flüssigkeit nachweisen.

Anwendungen u.a. in der Zellbiologie

„Das Zusammenspiel zwischen der Makro- und der Nano-Welt zu verstehen und zu kontrollieren ist die eigentliche Herausforderung in der Nanowissenschaft“, betont Greber. Denn dabei geht es um die Überbrückung von sechs Längengrößenordnungen – von Millimeter (10-3 m) zu Nanometer (10-9 m) – also einem Faktor von einer Million. „Unser Modellsystem des elektrisch schaltbaren Nanomesh und dem beobachtbaren Kontaktwinkel eines Tropfens erlaubt es, das fundamentale Phänomen der Reibung von Flüssigkeiten an Oberflächen genauer zu verstehen. Dies dürfte helfen, um Probleme, wie sie zum Beispiel bei der Schmierung auftreten, besser lösen zu können.“

Interessant ist das neue System einerseits für die Biologie. Die Anwendung dieses Effekts sollte es ermöglichen, die Adhäsion und Wanderung von Zellen kontrolliert zu steuern. Dadurch lassen sich Aspekte wie die Zellmigration oder die Bildung komplexer mehrzelliger Strukturen mit neuen wissenschaftlichen Ansätzen erforschen. Denkbar sind andererseits technologische Anwendungen wie Kapillarpumpen, bei denen die Kapillarhöhe durch die elektrische Spannung kontrolliert werden kann oder Mikrokapillaren, bei denen sich der Strömungswiderstand steuern lässt.

Die Forschungsergebnisse entstanden im Rahmen des Sinergia-Programms des Schweizerischen Nationalfonds (SNF). Der SNF fördert mit diesem Instrument die Zusammenarbeit von mehreren Forschungsgruppen, die interdisziplinär und mit Aussicht auf bahnbrechende Erkenntnisse forschen. Beteiligt waren neben der Universität Zürich die Katholieke Universiteit Leuven, die Technische Universität Wien und die Empa.

Literatur

Stijn F. L. Mertens, Adrian Hemmi, Stefan Muff, Oliver Gröning, Steven De Feyter, Jürg Osterwalder, Thomas Greber. Switching stiction and adhesion of a liquid on a solid. Nature. June 30, 2016. DOI: 10.1038/nature18275.

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

Effizienz und Leistung

Die neue Pioneer mit vielen Funktionen zum intelligenten Betrieb in Ihrem Labor. Mit antistatischem Stab zur Erdung. Weitere Informationen über die Waagen Pioneer PX

 

mehr...
Anzeige

Für die Zellkultur

3D-Kollagengerüst

RAFT™ (Real Architecture For 3D Tissue) von der britischen Firma TAP Biosystems wird seit kurzem von Dunn Labortechnik angeboten. Das neuartige Verfahren dient der Produktion von Kollagengerüsten, in denen bereits die Zellen in einer...

mehr...
Anzeige

Highlight der Woche

Quadrupol-Massenspektrometer PrismaPro®
Mit dem PrismaPro bietet Pfeiffer Vacuum ein Quadrupol-Massenspektrometer für die qualitative und quantitative Gasanalyse sowie zur Lecksuche an.

Zum Highlight der Woche...
Anzeige

Highlight der Woche

Perfekte GCMS-Ergebnisse dank Shimadzu NX-Technologien
Shimadzu erweitert die Singlequad- und Triplequad-GCMS um den Gaschromatographen GC-2030. Damit werden Analysen präziser, Wartungsarbeiten vereinfacht und die Geräteauslastung maximiert.

Zum Highlight der Woche...

Newsletter bestellen

Immer auf dem Laufenden mit dem LABO Newsletter

Aktuelle Unternehmensnachrichten, Produktnews und Innovationen kostenfrei in Ihrer Mailbox.

AGB und Datenschutz gelesen und bestätigt.
Zur Startseite