Ungewöhnlicher Lichtrezeptor behebt Erbgutschäden

Frühform eines lichtabhängigen Enzyms zur DNA-Reparatur entdeckt

Biologinnen und Biologen aus Marburg, Salamanca und Sevilla haben Licht in die Evolution der DNA-Reparatur gebracht. Das Team um Prof. Dr. Alfred Batschauer von der Philipps-Universität fand bei der genetischen Untersuchung von Pilzen der Unterabteilung Mucoromycotina heraus, dass diese über ein lichtabhängiges Enzym verfügen, welches anders als bislang angenommen nicht nur einzelsträngige, sondern auch doppelsträngige DNA reparieren kann.

Sporangiophore (Fruchtkörper) des Pilzes Phycomyces blakesleeanus. Das DASH-Cryptochrom dieses Pilzes wurde in der besprochenen PNAS-Publikation untersucht. Sporangiophore sind Einzelzellen, die aus dem Myzel herauswachsen und mehrere Zentimeter lang werden können. Sie reagieren auf Umweltfaktoren wie Licht, Schwerkraft und Wind und dienen der Verbreitung der Sporen. (Bild mit freundlicher Genehmigung von M. del Mar Gil-Sáchez)

Die deutschen und spanischen Wissenschaftlerinnen und Wissenschaftler berichten über ihre Ergebnisse in einer Online-Vorabveröffentlichung des Wissenschaftsmagazins „Proceedings of the National Academy of Sciences of the United States of America“ (PNAS).

Damit Organismen in ihrer Umwelt bestehen können, benötigen sie einen wirksamen Mechanismus, der Schäden an der Erbsubstanz DNA behebt – zum Beispiel, wenn sie durch ultraviolettes Licht geschädigt wird. Ohne solche Reparaturmechanismen führen diese Schäden zu Mutationen, Krebs oder Zelltod.

Die Forschergruppe um Batschauer untersuchte den DNA-Reparaturmechanismus in Pilzen der Unterabteilung Mucoromycotina, zu der auch der Schimmelpilz Phycomyces gehört. Das Team fand heraus, dass diese Pilze sogenannte DASH-Cryptochrome für die DNA-Reparatur nutzen. DASH steht für die Arten (Drosophila, Arabidopsis, Synechocystis, Homo sapiens), in denen diese oder verwandte Gene zunächst gefunden wurden.

Anzeige

Sie existieren aber auch in anderen Organismen, beispielsweise in Pilzen. Für die lichtabhängige Reparatur von UV-Schäden ist in anderen Organismen das Enzym Photolyase zuständig. Nicht so bei der untersuchten Gruppe von Pilzen. „Im Gegensatz zu anderen Organismengruppen fanden wir in den Genomen dieser Pilze ausschließlich DASH-Cryptochrome, keine Photolyase. Das war überraschend, weil bekannt war, dass diese Pilze Licht für die Reparatur von UV-Schäden nutzen. Wir konnten zeigen, dass die DASH-Cryptochrome in den Pilzen die evolutionäre Urform der DNA-Reparaturaktivität behalten haben“, erklärt Batschauer, korrespondierender Autor der Veröffentlichung.

DASH-Cryptochrome galten bislang als Photorezeptoren mit eingeschränkter DNA-Reparaturaktivität. Das Autorenteam war deshalb der Frage nachgegangen, ob DASH-Cryptochrome des Schimmelpilzes auch Schäden in doppelsträngiger DNA reparieren können. In der nun publizierten Arbeit wird dies bestätigt. „Unsere Befunde liefern einen wichtigen Beitrag zum Verständnis der Evolution der Cryptochrome und Photolyase, die zu einer Proteinfamilie gehören. „Nun wollen wir die molekularen Grundlagen der funktionellen Unterschiede von DASH-Cryptochromen aus verschiedenen Organismengruppen verstehen“, berichtet Batschauer über die nächsten Schritte seiner Forschung.

Die publizierten Erkenntnisse bauen auf früheren Entdeckungen Batschauers auf. Er hatte 1993 zeitgleich mit amerikanischen Wissenschaftlern die Cryptochrome als eine neue Gruppe von Lichtrezeptoren in Pflanzen entdeckt. Sie haben strukturelle Ähnlichkeit mit dem lichtabhängigen Enzym Photolyase. Cryptochrome von Pflanzen und vielen anderen Organismen erkennen den Blaulichtanteil des Sonnenlichts, sie sind außerdem Bestandteil der biologischen Uhr von Menschen und anderen Säugetieren. Nach der Entdeckung der Cryptochrome forschte Batschauer zeitweilig an diesen Photorezeptoren gemeinsam mit Prof. Dr. Aziz Sancar, der 2015 den Chemie-Nobelpreis für seine Forschung zu DNA-Reparaturmechanismen erhielt.

Prof. Dr. Alfred Batschauer leitet eine Arbeitsgruppe für Pflanzenphysiologie und Photobiologie an der Philipps-Universität Marburg. Die Forschungsarbeit, die der aktuellen Publikation zugrunde liegt, wurde mit Mitteln des von der Deutschen Forschungsgemeinschaft geförderten Sonderforschungsbereichs 987 „Mikrobielle Diversität in umweltabhängiger Signalantwort“ ermöglicht.

Originalpublikation:
Victor G. Tagua, Marcell Pausch & al.: Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution, PNAS 2015.

Weitere Informationen:
Prof. Dr. Alfred Batschauer,
Fachgebiet Pflanzenphysiologie und Photobiologie
E-Mail: batschau@biologie.uni-marburg.de

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige