Zentraler Syntheseschritt in den Mitochondrien der Pflanzen

Ohne Eisen-Schwefel-Cluster geht nichts

Forscher der Universität Bonn haben ein Protein identifiziert, das einen zentralen Schritt in den Zellkraftwerken der Pflanzen vermittelt.

Der Komplettverlust des Eisen-Schwefel-Clusters in pflanzlichen Mitochondrien führt dazu, dass die Pflanzen schon während der Bildung ihrer Samen vorzeitig absterben. Oben: Geöffnete Schote einer Glutaredoxin S15- Arabidopsis-Mutante. Die weißen Samen sterben ab. Unten: Zwei Samenanlagen mit sich entwickelndem Embryo (links: Wildtyp; rechts: nicht lebensfähige Mutante). Überlagertes Bild: Strukturmodell eines Eisen-Schwefel-Clusters. (© Darstellung: AG Meyer / Uni Bonn)

Die Studie wirft Licht auf einen uralten Mechanismus, der Grundlage allen Lebens auf der Erde ist. Neben Agrarwissenschaftlern der Universität Bonn waren auch Forscher aus Marburg, Düsseldorf und Nancy (Frankreich) beteiligt. Die Arbeit ist nun in der Zeitschrift PNAS erschienen.

Bei einem Brand bilden die Nachbarn eine Kette und reichen den Wassereimer von Hand zu Hand bis zum Brandherd. Ähnliche Ketten gibt es in den Zellen auch. Statt Wasser werden in ihnen Elektronen weitergereicht. Die einzelnen Kettenglieder bestehen aus Proteinen. Um Elektronen an das nächste Glied übergeben zu können, benötigen sie einen mineralischen Komplex aus Eisen und Schwefel, der dem Katzengold Pyrit ähnelt. Dieser Komplex kann kurzzeitig mit Elektronen „befüllt“ werden; diesen Vorgang bezeichnet man als Reduktion. Er kann diese Elektronen aber auch wieder abgeben; Chemiker nennen das Oxidation.

Derartige Redoxketten wurden schon sehr früh im Laufe der Evolution erfunden. Es gibt sie in allen Lebewesen, egal ob in Pflanzen, Tieren oder Bakterien. Sie finden sich vor allem dort, wo Energie umgesetzt wird. Wenn wir etwa zur Energiegewinnung Zucker zu Wasser und Kohlendioxid „verbrennen“ (= oxidieren), werden dabei Elektronen übertragen. Bei der Fotosynthese läuft dieser Vorgang in Gegenrichtung ab.

Anzeige
Arabidopsis-Keimlinge: Wildtyp Kontrolle (links); Mutanten mit partiell defekter Genkopie (rechts). Der Defekt im Eisen-Schwefel-Cluster-Transfer bedingt ein stark verzögertes Wachstum. (© Darstellung: AG Meyer / Uni Bonn)

Weitgehend ungeklärt war bislang, wie die Proteine mit dem Eisen-Schwefel-Komplex versehen werden, den sie zur Weitergabe der Elektronen benötigen. Das Forscherteam aus Bonn, Marburg, Düsseldorf und Nancy hat nun ein Protein identifiziert, das vermutlich diesen Transferschritt vermittelt. Fündig wurden sie in bestimmten Zellbestandteilen der Ackerschmalwand Arabidopsis thaliana, den so genannten Mitochondrien. Mitochondrien gelten als „Kraftwerke“ der Zelle: In ihnen finden verschiedene metabolische Prozesse zur Oxidation von Nährstoffen und damit letztlich zur Energiegewinnung statt, unter anderem der sogenannte Zitratzyklus.

Tödliche Mutation
Damit diese Abläufe im Kraftwerk funktionieren, braucht die Pflanze augenscheinlich ein Protein namens Glutaredoxin S15. „Wir konnten zeigen, dass die Ackerschmalwand ohne Glutaredoxin S15 nicht lebensfähig ist“, erklärt Prof. Dr. Andreas J. Meyer vom Institut für Nutzpflanzenwissenschaften und Ressourcenschutz der Uni Bonn. „Um zu untersuchen, warum die Pflanze stirbt, haben wir das defekte Glutaredoxin S15 durch eine Kopie mit verminderter Aktivität ersetzt. Dabei entstanden Pflanzen, in denen wesentliche Komponenten des Zitratzyklus nicht funktionierten.“

Möglicherweise bringt Glutaredoxin S15 die Eisen-Schwefel-Cluster zu den Zielproteinen, die sie als Katalysator benötigen. Ein solcher Zusammenhang wurde schon lange vermutet; ein Beweis dafür stand aber noch aus. „Unsere Ergebnisse untermauern die Bedeutung des Glutaredoxin S15 bei diesem Prozess“, erklärt Anna Moseler, Doktorandin in der Arbeitsgruppe von Prof. Meyer.

Eisen-Schwefel-Cluster haben eine grundlegende Bedeutung für die gesamte Bioenergetik. Die an der Modellpflanze Ackerschmalwand gewonnenen Erkenntnisse sind daher auch für Nutzpflanzen enorm wichtig. Darüber hinaus tragen die Ergebnisse zu einem besseren Verständnis des Mineralstoffhaushalts in Pflanzen bei. Glutaredoxine sind zudem anfällig für stressbedingte oxidative Veränderungen. Daher könnten die Erkenntnisse langfristig auch dabei helfen, Pflanzen mit verbesserter Stresstoleranz zu züchten. „Das wäre ein wichtiger Schritt auf dem Weg zu Nutzpflanzen-Sorten, die in der Lage sind, sich bei widrigen Bedingungen selbst zu helfen, und so zur Sicherung der Nahrungsmittelversorgung beitragen“, betont Meyer.

Publikation:
Anna Moseler, Isabel Aller, Stephan Wagner, Thomas Nietzel, Jonathan Przybyla-Toscano, Ulrich Mühlenhoff, Roland Lill, Carsten Berndt, Nicolas Rouhier, Markus Schwarzländer, and Andreas J. Meyer: The mitochondrial monothiol glutaredoxin S15 is essential for iron-sulfur protein maturation in Arabidopsis thaliana; PNAS Early Edition; DOI: 10.1073/pnas.1510835112.

Anzeige

Das könnte Sie auch interessieren

Anzeige

Pflanzenzüchtung

ATP in Keimlingen sichtbar gemacht

Ein internationales Forscherteam unter Federführung der Universität Bonn zeigt an lebenden Keimlingen, wie sich ATP in den unterschiedlichen Pflanzenteilen verhält und welchen Einfluss Stress darauf hat. Die Ergebnisse könnten potenziell Hinweise...

mehr...
Anzeige

Integriertes Datenmanagement

Ihre im Labor erzeugten Daten können Sie sicher und strukturiert in einem System sammeln. NEC und labfolder bieten ein Mittel für die effiziente Verwaltung großer wissenschaftlicher Datensätze an.

mehr...
Anzeige
Anzeige
Anzeige

Highlight der Woche

Integriertes Datenmanagement
Die Herausforderung bei der Digitalisierung des Laboralltags besteht im Wechsel von Papierlaborbüchern und Computerdateien zu einer Datenmanagementsoftware, die große Datensätze strukturiert innerhalb eines einzigen Systems sammelt.

Zum Highlight der Woche...

Newsletter bestellen

Immer auf dem Laufenden mit dem LABO Newsletter

Aktuelle Unternehmensnachrichten, Produktnews und Innovationen kostenfrei in Ihrer Mailbox.

AGB und Datenschutz gelesen und bestätigt.
Zur Startseite